Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 255: 127562, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37865356

RESUMEN

Wharton's Jelly (WJ) has attracted significant interest in the field of tissue healing thanks to its biological properties, including antibacterial activity and immunomodulation. However, due to the fast degradation and poor mechanical behavior in biological environment, its application in bone regeneration is compromised. Here, we proposed to use genipin as an efficient cross-linking agent to significantly improve the elasticity and the enzymatical stability of the WJ matrix. The degree of cross-linking, linear elastic moduli, and collagenase resistance varied over a wide range depending on genipin concentration. Furthermore, our results highlighted that an increase in genipin concentration led to a decreased surface wettability, therefore impairing cell attachment and proliferation. The genipin cross-linking prevented rapid in vitro and in vivo degradation, but led to an adverse host reaction and calcification. When implanted in the parietal bone defect, a limited parietal bone regeneration to the dura was observed. We conclude that genipin-cross-linked WJ is a versatile medical device however, a careful selection is required with regards to the genipin concentration.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Gelatina de Wharton/metabolismo , Cicatrización de Heridas , Diferenciación Celular , Cordón Umbilical , Proliferación Celular
2.
Cells ; 11(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139439

RESUMEN

In craniofacial bone defects, the promotion of bone volume augmentation remains a challenge. Finding strategies for bone regeneration such as combining resorbable minerals with organic polymers would contribute to solving the bone volume roadblock. Here, dicalcium phosphate dihydrate, chitosan and hyaluronic acid were used to functionalize a bone-side collagen membrane. Despite an increase in the release of inflammatory mediators by human circulating monocytes, the in vivo implantation of the functionalized membrane allowed the repair of a critical-sized defect in a calvaria rat model with de novo bone exhibiting physiological matrix composition and structural organization. Microtomography, histological and Raman analysis combined with nanoindentation testing revealed an increase in bone volume in the presence of the functionalized membrane and the formation of woven bone after eight weeks of implantation; these data showed the potential of dicalcium phosphate dihydrate, chitosan and hyaluronic acid to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in animal models.


Asunto(s)
Quitosano , Animales , Materiales Biocompatibles , Fosfatos de Calcio , Quitosano/farmacología , Colágeno , Humanos , Ácido Hialurónico/farmacología , Mediadores de Inflamación , Minerales , Ratas
3.
Proc Inst Mech Eng H ; 236(8): 1106-1117, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35778813

RESUMEN

Matrix Gla protein (MGP) is mostly known to be a calcification inhibitor, as its absence leads to ectopic calcification of different tissues such as cartilage or arteries. MGP deficiency also leads to low bone mass and delayed bone growth. In the present contribution, we investigate the effect of MGP deficiency on the structural and material mechanical bone properties by focusing on the elastic response of femurs undergoing three-points bending. To this aim, biomechanical tests are performed on femurs issued from Mgp-deficient mice at 14, 21, 28, and 35 days of postnatal life and compared to healthy control femurs. µCT acquisitions enable to reconstruct bone geometries and are used to construct subject-specific finite element models avoiding some of the reported limitations concerning the use of beam-like assumptions for small bone samples. Our results indicate that MGP deficiency may be associated to differences in both structural and material properties of femurs during early stages of development. MGP deficiency appears to be related to a decrease in bone dimensions, compensated by higher material properties resulting in similar structural bone properties at P35. The search for a unique density-elasticity relationship based on calibrated bone mineral density (BMD) indicates that MGP deficiency may affect bone tissue in several ways, that may not be represented uniquely from the quantification of BMD. Despite of its limitation to elastic response, the present preliminary study reports for the very first time the mechanical skeletal properties of Mgp-deficient mice at early stages of development.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular , Fémur , Animales , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Cartílago/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Fémur/diagnóstico por imagen , Fémur/fisiopatología , Ratones , Proteína Gla de la Matriz
4.
Biomedicines ; 10(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35203437

RESUMEN

Of all biologic matrices, decellularized tissues have emerged as a promising tool in the field of regenerative medicine. Few empirical clinical studies have shown that Wharton's jelly (WJ) of the human umbilical cord promotes wound closure and reduces wound-related infections. In this scope, we herein investigated whether decellularized (DC)-WJ could be used as an engineered biomaterial. In comparison with devitalized (DV)-WJ, our results showed an inherent effect of DC-WJ on Gram positive (S. aureus and S. epidermidis) and Gram negative (E. coli and P. aeruginosa) growth and adhesion. Although DC-WJ activated the neutrophils and monocytes in a comparable magnitude to DV-WJ, macrophages modulated their phenotypes and polarization states from the resting M0 phenotype to the hybrid M1/M2 phenotype in the presence of DC-WJ. M1 phenotype was predominant in the presence of DV-WJ. Finally, the subcutaneous implantation of DC-WJ showed total resorption after three weeks of implantation without any sign of foreign body reaction. These significant data shed light on the potential regenerative application of DC-WJ in providing a suitable biomaterial for tissue regenerative medicine and an ideal strategy to prevent wound-associated infections.

5.
J Mech Behav Biomed Mater ; 126: 104981, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915358

RESUMEN

Wharton's jelly (WJ) is a mucous connective tissue of the umbilical cord. It shows high healing capabilities, mainly attributed to the chemical composition and to the presence of stem cells, growth factors and peptides. Although WJ biological properties are well documented in vitro and in vivo, there is still a lack of mechanical data on this tissue, which is paramount for its use as a biomaterial for medical applications. In this study, mechanical responses of ten WJ samples within close physiological conditions were registered undergoing quasi static cyclic tensile tests followed by a load up to failure. This protocol aimed on one hand to provide biomechanical data to feed predictive numerical models and on the other hand increase WJ knowledge in view of its potential use in biomedical field. In spite of the WJ harvest, the resulting viscous nonlinear elastic response obtained is fully in tune with the literature confirming the database quality. A side of the knowledge improvement on WJ mechanical response, this paper provides accurate data that will enhance predictive simulation work such as finite element analysis. The mechanical step-through brought by the analytical nonlinear characterization over cyclic and ultimate loads is to predict WJ behavior. Actually, principal component analysis highlighted its quality while pointing out indicators, such as failure or hydration criteria, as well as models' limitations.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Cordón Umbilical
6.
Polymers (Basel) ; 12(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971891

RESUMEN

(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton's jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (n = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-co-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering.

7.
Proc Inst Mech Eng H ; 234(3): 265-272, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32126905

RESUMEN

The usage of finite element method techniques gives a possibility to replace time-consuming experiments or imitate physical process in the ear by numerical simulation. Especially, the research of spatial motion of ossicular chain in the middle ear is of high interest for the oto-surgeons and engineers. It is known that the most affected bone from the ossicular chain is the incus. After the cholesteatoma operation and tympanoplasty, the affected incus is removed or sacrificed; thus, the possibility of transducing noise lays on the stapes, new titanium or other material prosthesis. In this case, the affected incus was removed because of the cholesteatoma that was lying in front of it in the tympanic cavity. The removed incus with the affected long process passed micro-computed tomography. The computer-aided design systems allowed redesigning a 'healthy' incus with an intact long process. In this way, it was possible to evaluate the influence of damaged long process of incus in the vibrational analysis. This article analyses the problems of mechanical behaviour of injured and healthy human incus. The numerical simulation has demonstrated that the features of healthy incus and analysed injured incus do not differ significantly, especially at low (about 500 Hz) frequencies. It explains why there is no impact of cholesteatoma on hearing for a long time in the audiogram.


Asunto(s)
Análisis de Elementos Finitos , Yunque/lesiones , Fenómenos Mecánicos , Fenómenos Biomecánicos , Humanos , Imagenología Tridimensional , Yunque/diagnóstico por imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...