Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Atherosclerosis ; 193(1): 177-85, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16839560

RESUMEN

INTRODUCTION: Cardio- and/or cerebro-vascular risk are associated with high lipoprotein (a) [Lp(a)] levels and low-molecular-weight (LMW) apo(a) isoforms. Aims of this study were to evaluate the deposition of apo(a) isoforms and apoprotein B (apo B) in atherosclerotic plaque from patients (males and females) who had carotid endarterectomy for severe stenosis, and to identify differences between patients classified by gender and divided according to the stability or instability of their plaques. MATERIALS AND METHODS: We determined lipids, apo B and Lp(a) in serum and plaque extracts from 55 males and 25 females. Apo(a) was phenotyped and isoforms were classified by number of kringle IV (KIV) repeats. RESULTS: Lp(a) levels were higher in female serum and plaque extracts than in male samples, while apo B levels were lower. More Lp(a) than apo B deposition was observed in plaque after normalization for serum levels. Thirty-one different apo(a) isoforms were detected in our patients, with a double band phenotype in 94% of cases. In both sexes, the low/high (L/H) molecular weight apo(a) isoform expression ratio was significantly higher in plaque than in serum. Females with unstable plaques had higher Lp(a) levels in both serum and tissue extracts, and fewer KIV repeats of the principal apo(a) isoform in the serum than the other female group or males. CONCLUSIONS: In both sexes, the same apo(a) isoforms are found in serum and atherosclerotic plaque, but in different proportions: in plaque, LMW apo(a) is almost always more strongly accumulated than HMW apo(a), irrespective of any combination of apo(a) isoforms in double band phenotypes or Lp(a) serum levels. Moreover, serum and tissue Lp(a) levels were higher in females than in males, and particularly in the group with unstable plaques.


Asunto(s)
Apoproteína(a)/sangre , Apoproteína(a)/metabolismo , Estenosis Carotídea/metabolismo , Anciano , Apoproteína(a)/química , Estenosis Carotídea/cirugía , Endarterectomía Carotidea , Femenino , Humanos , Kringles , Metabolismo de los Lípidos , Lípidos/sangre , Lipoproteína(a)/sangre , Lipoproteína(a)/metabolismo , Masculino , Persona de Mediana Edad , Isoformas de Proteínas/sangre , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Caracteres Sexuales
2.
Clin Chim Acta ; 372(1-2): 120-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16678810

RESUMEN

BACKGROUND: Our aim was to identify the pancreatic cancer diabetogenic peptide. METHODS: Pancreatic tumor samples from patients with (n=15) or without (n=7) diabetes were compared with 6 non-neoplastic pancreas samples using SDS-PAGE. RESULTS: A band measuring approximately 1500 Da was detected in tumors from diabetics, but not in neoplastic samples from non-diabetics or samples from non-neoplastic subjects. Sequence analysis revealed a 14 amino acid peptide (1589.88 Da), corresponding to the N-terminal of the S100A8. At 50 nmol/L and 2 mmol/L, this peptide significantly reduced glucose consumption and lactate production by cultured C(2)C(12) myoblasts. The 14 amino acid peptide caused a lack of myotubular differentiation, the presence of polynucleated cells and caspase-3 activation. CONCLUSIONS: The 14 amino acid peptide from S100A8 impairs the catabolism of glucose by myoblasts in vitro and may cause hyperglycemia in vivo. Its identification in biological fluids might be helpful in diagnosing pancreatic cancer in patients with recent onset diabetes mellitus.


Asunto(s)
Diabetes Mellitus/etiología , Neoplasias Pancreáticas/química , Proteínas S100/química , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas S100/fisiología , Espectrometría de Masa por Ionización de Electrospray
3.
Clin Chim Acta ; 357(2): 184-9, 2005 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-15946661

RESUMEN

BACKGROUND: Diabetes mellitus is associated with pancreatic cancer in more than 80% of the cases. Clinical, epidemiological, and experimental data indicate that pancreatic cancer causes diabetes mellitus by releasing soluble mediators which interfere with both beta-cell function and liver and muscle glucose metabolism. METHODS: We analysed, by matrix-assisted laser desorption ionization time of flight (MALDI-TOF), a series of pancreatic cancer cell lines conditioned media, pancreatic cancer patients' peripheral and portal sera, comparing them with controls and chronic pancreatitis patients' sera. RESULTS: MALDI-TOF analysis of pancreatic cancer cells conditioned media and patients' sera indicated a low molecular weight peptide to be the putative pancreatic cancer-associated diabetogenic factor. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of tumor samples from diabetic and non-diabetic patients revealed the presence of a 1500 Da peptide only in diabetic patients. The amino acid sequence of this peptide corresponded to the N-terminal of an S-100 calcium binding protein, which was therefore suggested to be the pancreatic cancer-associated diabetogenic factor. CONCLUSIONS: We identified a tumor-derived peptide of 14 amino acids sharing a 100% homology with an S-100 calcium binding protein, which is probably the pancreatic cancer-associated diabetogenic factor.


Asunto(s)
Complicaciones de la Diabetes/etiología , Complicaciones de la Diabetes/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/metabolismo , Proteómica , Animales , Complicaciones de la Diabetes/diagnóstico , Complicaciones de la Diabetes/genética , Glucosa/metabolismo , Humanos , Neoplasias Pancreáticas/diagnóstico
4.
Rapid Commun Mass Spectrom ; 19(4): 561-7, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15669085

RESUMEN

Homocysteine is an independent risk factor for cardio- and/or cerebrovascular diseases. Many methods are used to measure plasma homocysteine levels in physiological fluids. Current gas chromatographic/mass spectrometric (GC/MS) methods allow determination not only of plasma homocysteine concentration, but also of its turnover. However, they have some methodological limitations due to the reduction of disulfide bonds between homocysteine and other thiols or proteins often requiring the use of several very toxic compounds or multi-step procedures that are particularly time-consuming, and/or utilize expensive instruments. Herein is described a rapid and precise GS/MS method to determine homocysteine turnover from a relatively low volume of plasma (200 microL). First disulfide bonds were reduced by 2-mercaptoethanol, which allows the maintenance of the reduced status preventing the rebuilding of the disulfide bond. Then the sample was derivatized to form the bis-tert-butyldimethylsilyl derivative. A deuterated internal standard, DL-[3,3,3',3',4,4,4',4'-2H8]-homocystine, was employed to account for losses associated with each analytical step. To evaluate the 'in vivo' homocysteine metabolic turnover, [1-13C]-methionine was infused and the derived [1-13C]-homocysteine quantitated. So a standard curve of [1-13C]-homocysteine was prepared by the decomposition of the [1-13C] methionine. The ions at m/z 325 and 326 were monitored, corresponding to the unlabeled [12C]-homocysteine and to labeled [13C]-homocysteine, respectively. The ion at m/z 325 ([M-114)]+) probably resulted from the loss of one derivatizing group to regenerate a free amino group. The intra-assay coefficient of variation (CV-intra%) was consistently less than 1.06%, the inter-assay (CV-inter%) less than 1.05%. The method described here seems to be simpler, more rapid, and less toxic than those published so far. In particular, its main strength appears to be the degree of precision obtained. We suggest applying this method to the measurement of the 'in vivo' rate of production of homocysteine (by the plasma 13C-homocysteine enrichment) from its precursor (13C-methionine).


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Homocisteína/sangre , Homocisteína/química , Humanos , Mercaptoetanol/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA