Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Invest Radiol ; 59(7): 538-544, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193779

RESUMEN

OBJECTIVES: This project aims to model an optimal scanning environment for breast magnetic resonance imaging (MRI) screening based on real-life data to identify to what extent the logistics of breast MRI can be optimized. MATERIALS AND METHODS: A novel concept for a breast MRI screening facility was developed considering layout of the building, workflow steps, used resources, and MRI protocols. The envisioned screening facility is person centered and aims for an efficient workflow-oriented design. Real-life data, collected from existing breast MRI screening workflows, during 62 scans in 3 different hospitals, were imported into a 3D simulation software for designing and testing new concepts. The model provided several realistic, virtual, logistical pathways for MRI screening and their outcome measures: throughput, waiting times, and other relevant variables. RESULTS: The total average appointment time in the baseline scenario was 25:54 minutes, with 19:06 minutes of MRI room occupation. Simulated improvements consisted of optimizing processes and resources, facility layout, and scanning protocol. In the simulation, time spent in the MRI room was reduced by introducing an optimized facility layout, dockable tables, and adoption of an abbreviated MRI scanning protocol. The total average appointment time was reduced to 19:36 minutes, and in this scenario, the MRI room was occupied for 06:21 minutes. In the most promising scenario, screening of about 68 people per day (10 hours) on a single MRI scanner could be feasible, compared with 36 people per day in the baseline scenario. CONCLUSIONS: This study suggests that by optimizing workflow MRI for breast screening total appointment duration and MRI occupation can be reduced. A throughput of up to 6 people per hour may be achieved, compared with 3 people per hour in the current setup.


Asunto(s)
Neoplasias de la Mama , Simulación por Computador , Imagen por Resonancia Magnética , Flujo de Trabajo , Humanos , Imagen por Resonancia Magnética/métodos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Atención Dirigida al Paciente
2.
Cell Rep Med ; 4(8): 101131, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37490915

RESUMEN

Digital health data used in diagnostics, patient care, and oncology research continue to accumulate exponentially. Most medical information, and particularly radiology results, are stored in free-text format, and the potential of these data remains untapped. In this study, a radiological repomics-driven model incorporating medical token cognition (RadioLOGIC) is proposed to extract repomics (report omics) features from unstructured electronic health records and to assess human health and predict pathological outcome via transfer learning. The average accuracy and F1-weighted score for the extraction of repomics features using RadioLOGIC are 0.934 and 0.934, respectively, and 0.906 and 0.903 for the prediction of breast imaging-reporting and data system scores. The areas under the receiver operating characteristic curve for the prediction of pathological outcome without and with transfer learning are 0.912 and 0.945, respectively. RadioLOGIC outperforms cohort models in the capability to extract features and also reveals promise for checking clinical diagnoses directly from electronic health records.


Asunto(s)
Enfermedades de la Mama , Radiología , Humanos , Registros Electrónicos de Salud , Curva ROC , Atención a la Salud
3.
Semin Nucl Med ; 52(5): 584-596, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35339259

RESUMEN

This review gives an overview of the current state of deep learning research in breast cancer imaging. Breast imaging plays a major role in detecting breast cancer at an earlier stage, as well as monitoring and evaluating breast cancer during treatment. The most commonly used modalities for breast imaging are digital mammography, digital breast tomosynthesis, ultrasound and magnetic resonance imaging. Nuclear medicine imaging techniques are used for detection and classification of axillary lymph nodes and distant staging in breast cancer imaging. All of these techniques are currently digitized, enabling the possibility to implement deep learning (DL), a subset of Artificial intelligence, in breast imaging. DL is nowadays embedded in a plethora of different tasks, such as lesion classification and segmentation, image reconstruction and generation, cancer risk prediction, and prediction and assessment of therapy response. Studies show similar and even better performances of DL algorithms compared to radiologists, although it is clear that large trials are needed, especially for ultrasound and magnetic resonance imaging, to exactly determine the added value of DL in breast cancer imaging. Studies on DL in nuclear medicine techniques are only sparsely available and further research is mandatory. Legal and ethical issues need to be considered before the role of DL can expand to its full potential in clinical breast care practice.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Inteligencia Artificial , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Humanos , Mamografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...