Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Cancer Immunol Res ; 12(3): 322-333, 2024 03 04.
Article En | MEDLINE | ID: mdl-38147316

Preclinical murine data indicate that fragment crystallizable (Fc)-dependent depletion of intratumoral regulatory T cells (Treg) is a major mechanism of action of anti-CTLA-4. However, the two main antibodies administered to patients (ipilimumab and tremelimumab) do not recapitulate these effects. Here, we investigate the underlying mechanisms responsible for the limited Treg depletion observed with these therapies. Using an immunocompetent murine model humanized for CTLA-4 and Fcγ receptors (FcγR), we show that ipilimumab and tremelimumab exhibit limited Treg depletion in tumors. Immune profiling of the tumor microenvironment (TME) in both humanized mice and humans revealed high expression of the inhibitory Fc receptor, FcγRIIB, which limits antibody-dependent cellular cytotoxicity/phagocytosis. Blocking FcγRIIB in humanized mice rescued the Treg-depleting capacity and antitumor activity of ipilimumab. Furthermore, Fc engineering of antibodies targeting Treg-associated targets (CTLA-4 or CCR8) to minimize FcγRIIB binding significantly enhanced Treg depletion, resulting in increased antitumor activity across various tumor models. Our results define the inhibitory FcγRIIB as an immune checkpoint limiting antibody-mediated Treg depletion in the TME, and demonstrate Fc engineering as an effective strategy to overcome this limitation and improve the efficacy of Treg-targeting antibodies.


Neoplasms , T-Lymphocytes, Regulatory , Humans , Animals , Mice , Ipilimumab/pharmacology , Ipilimumab/therapeutic use , CTLA-4 Antigen , Tumor Microenvironment , Neoplasms/drug therapy
2.
Cancers (Basel) ; 15(17)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37686653

HPV-associated oropharynx carcinoma (HPVOPC) tumors have a relatively low mutational burden. Elucidating the relative contributions of other tumor alterations, such as DNA methylation alterations, alternative splicing events (ASE), and copy number variation (CNV), could provide a deeper understanding of carcinogenesis drivers in this disease. We applied network propagation analysis to multiple classes of tumor alterations in a discovery cohort of 46 primary HPVOPC tumors and 25 cancer-unaffected controls and validated our findings with TCGA data. We identified significant overlap between differential gene expression networks and all alteration classes, and this association was highest for methylation and lowest for CNV. Significant overlap was seen for gene clusters of G protein-coupled receptor (GPCR) pathways. HPV16-human protein interaction analysis identified an enriched cluster defined by an immune-mediated GPCR signal, including CXCR3 cytokines CXCL9, CXCL10, and CXCL11. CXCR3 was found to be expressed in primary HPVOPC, and scRNA-seq analysis demonstrated CXCR3 ligands to be highly expressed in M2 macrophages. In vivo models demonstrated decreased tumor growth with antagonism of the CXCR3 receptor in immunodeficient but not immunocompetent mice, suggesting that the CXCR3 axis can drive tumor proliferation in an autocrine fashion, but the effect is tempered by an intact immune system. In conclusion, methylation, ASE, and SNV alterations are highly associated with network gene expression changes in HPVOPC, suggesting that ASE and methylation alterations have an important role in driving the oncogenic phenotype. Network analysis identifies GPCR networks, specifically the CXCR3 chemokine axis, as modulators of tumor-immune interactions that may have proliferative effects on primary tumors as well as a role for immunosurveillance; however, CXCR3 inhibition should be used with caution, as these agents may both inhibit and stimulate tumor growth considering the competing effects of this cytokine axis. Further investigation is needed to explore opportunities for targeted therapy in this setting.

3.
bioRxiv ; 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36711504

Despite pre-clinical murine data supporting T regulatory (Treg) cell depletion as a major mechanism by which anti-CTLA-4 antibodies function in vivo, the two main antibodies tested in patients (ipilimumab and tremelimumab) have failed to demonstrate similar effects. We report analogous findings in an immunocompetent murine model humanized for CTLA-4 and Fcy receptors (hCTLA-4/hFcyR mice), where both ipilimumab and tremelimumab fail to show appreciable Treg depletion. Immune profiling of the tumor microenvironment (TME) in both mice and human samples revealed upregulation of the inhibitory Fcy receptor, FcyRIIB, which limits the ability of the antibody Fc fragment of human anti-CTLA-4 antibodies to induce effective antibody dependent cellular cytotoxicty/phagocytosis (ADCC/ADCP). Blocking FcyRIIB in humanized mice rescues Treg depleting capacity and anti-tumor activity of ipilimumab. For another target, CC motif chemokine receptor 8 (CCR8), which is selectively expressed on tumor infiltrating Tregs, we show that Fc engineering to enhance binding to activating Fc receptors, while limiting binding to the inhibitory Fc receptor, leads to consistent Treg depletion and single-agent activity across multiple tumor models, including B16, MC38 and MB49. These data reveal the importance of reducing engagement to the inhibitory Fc receptor to optimize Treg depletion by TME targeting antibodies. Our results define the inhibitory FcyRIIB receptor as a novel immune checkpoint limiting antibody-mediated Treg depletion in tumors, and demonstrate Fc variant engineering as a means to overcome this limitation and augment efficacy for a repertoire of antibodies currently in use or under clinical evaluation in oncology.

4.
Cancer Immunol Immunother ; 72(6): 1405-1415, 2023 Jun.
Article En | MEDLINE | ID: mdl-36445410

BACKGROUND: CAPRA (NCT02565992) evaluated Coxsackievirus A21 (V937) + pembrolizumab for metastatic/unresectable stage IIIB-IV melanoma. METHODS: Patients received intratumoral V937 on days 1, 3, 5, and 8 (then every 3 weeks [Q3W]) and intravenous pembrolizumab 2 mg/kg Q3W from day 8. Primary endpoint was safety. RESULTS: Median time from first dose to data cutoff was 32.0 months. No dose-limiting toxicities occurred; 14% (5/36) of patients experienced grade 3‒5 treatment-related adverse events. Objective response rate was 47% (complete response, 22%). Among 17 responders, 14 (82%) had responses ≥ 6 months. Among 8 patients previously treated with immunotherapy, 3 responded (1 complete, 2 partial). Responses were associated with increased serum CXCL10 and CCL22, suggesting viral replication contributes to antitumor immunity. For responders versus nonresponders, there was no difference in baseline tumor PD-L1 expression, ICAM1 expression, or CD3+ infiltrates. Surprisingly, the baseline cell density of CD3+CD8- T cells in the tumor microenvironment was significantly lower in responders compared with nonresponders (P = 0.0179). CONCLUSIONS: These findings suggest responses to this combination may be seen even in patients without a typical "immune-active" microenvironment. TRIAL REGISTRATION NUMBER: NCT02565992.


Melanoma , Oncolytic Viruses , Humans , Animals , Goats , Antibodies, Monoclonal, Humanized/adverse effects , Melanoma/drug therapy , Tumor Microenvironment
5.
J Immunother Cancer ; 9(7)2021 07.
Article En | MEDLINE | ID: mdl-34266881

BACKGROUND: Emerging data suggest predictive biomarkers based on the spatial arrangement of cells or coexpression patterns in tissue sections will play an important role in precision immuno-oncology. Multiplexed immunofluorescence (mIF) is ideally suited to such assessments. Standardization and validation of an end-to-end workflow that supports multisite trials and clinical laboratory processes are vital. Six institutions collaborated to: (1) optimize an automated six-plex assay focused on the PD-1/PD-L1 axis, (2) assess intersite and intrasite reproducibility of staining using a locked down image analysis algorithm to measure tumor cell and immune cell (IC) subset densities, %PD-L1 expression on tumor cells (TCs) and ICs, and PD-1/PD-L1 proximity assessments. METHODS: A six-plex mIF panel (PD-L1, PD-1, CD8, CD68, FOXP3, and CK) was rigorously optimized as determined by quantitative equivalence to immunohistochemistry (IHC) chromogenic assays. Serial sections from tonsil and breast carcinoma and non-small cell lung cancer (NSCLC) tissue microarrays (TMAs), TSA-Opal fluorescent detection reagents, and antibodies were distributed to the six sites equipped with a Leica Bond Rx autostainer and a Vectra Polaris multispectral imaging platform. Tissue sections were stained and imaged at each site and delivered to a single site for analysis. Intersite and intrasite reproducibility were assessed by linear fits to plots of cell densities, including %PDL1 expression by TCs and ICs in the breast and NSCLC TMAs. RESULTS: Comparison of the percent positive cells for each marker between mIF and IHC revealed that enhanced amplification in the mIF assay was required to detect low-level expression of PD-1, PD-L1, FoxP3 and CD68. Following optimization, an average equivalence of 90% was achieved between mIF and IHC across all six assay markers. Intersite and intrasite cell density assessments showed an average concordance of R2=0.75 (slope=0.92) and R2=0.88 (slope=0.93) for breast carcinoma, respectively, and an average concordance of R2=0.72 (slope=0.86) and R2=0.81 (slope=0.68) for NSCLC. Intersite concordance for %PD-L1+ICs had an average R2 value of 0.88 and slope of 0.92. Assessments of PD-1/PD-L1 proximity also showed strong concordance (R2=0.82; slope=0.75). CONCLUSIONS: Assay optimization yielded highly sensitive, reproducible mIF characterization of the PD-1/PD-L1 axis across multiple sites. High concordance was observed across sites for measures of density of specific IC subsets, measures of coexpression and proximity with single-cell resolution.


Biomarkers, Tumor/metabolism , Fluorescent Antibody Technique/methods , Immunohistochemistry/methods , Laboratories, Clinical/standards , Tissue Array Analysis/methods , Female , Humans , Male
6.
Oncoimmunology ; 10(1): 1900635, 2021 03 17.
Article En | MEDLINE | ID: mdl-33796412

Pancreatic ductal adenocarcinoma (PDAC) has traditionally been thought of as an immunologically quiescent tumor type presumably because of a relatively low tumor mutational burden (TMB) and poor responses to checkpoint blockade therapy. However, many PDAC tumors exhibit T cell inflamed phenotypes. The presence of tertiary lymphoid structures (TLS) has recently been shown to be predictive of checkpoint blockade response in melanomas and sarcomas, and are prognostic for survival in PDAC. In order to more comprehensively understand tumor immunity in PDAC patients with TLS, we performed RNA-seq, single and multiplex IHC, flow cytometry and predictive genomic analysis on treatment naïve, PDAC surgical specimens. Forty-six percent of tumors contained distinct T and B cell aggregates reflective of "early-stage TLS" (ES-TLS), which correlated with longer overall and progression-free survival. These tumors had greater CD8+ T cell infiltration but were not defined by previously published TLS gene-expression signatures. ES-TLS+ tumors were enriched for IgG1 class-switched memory B cells and memory CD4+ T cells, suggesting durable immunological memory persisted in these patients. We also observed the presence of active germinal centers (mature-TLS) in 31% of tumors with lymphocyte clusters, whose patients had long-term survival (median 56 months). M-TLS-positive tumors had equivalent overall T cell infiltration to ES-TLS, but were enriched for activated CD4+ memory cells, naive B cells and NK cells. Finally, using a TCGA-PDAC dataset, ES-TLS+ tumors harbored a decreased TMB, but M-TLS with germinal centers expressed significantly more MHCI-restricted neoantigens as determined by an in silico neoantigen prediction method. Interestingly, M-TLS+ tumors also had evidence of increased rates of B cell somatic hypermutation, suggesting that germinal centers form in the presence of high-quality tumor neoantigens leading to increased humoral immunity that confers improved survival for PDAC patients. AbbreviationsTLS: tertiary lymphoid structures; GC: germinal center(s); PDAC: pancreatic ductal adenocarcinoma; RNA-seq: RNA sequencing; BCRseq: B cell receptor sequencing; HEV: high endothelial venule; PNAd: peripheral node addressin; TMB: tumor mutational burden; TCGA: the cancer genome atlas; PAAD: pancreatic adenocarcinoma; FFPE: formalin fixed paraffin embedded; TIME: tumor immune microenvironment.


Adenocarcinoma , Pancreatic Neoplasms , Tertiary Lymphoid Structures , Germinal Center , Humans , Immunity, Humoral , Pancreatic Neoplasms/genetics , Survivorship , Tumor Microenvironment
7.
Cancer Immunol Res ; 9(6): 602-611, 2021 06.
Article En | MEDLINE | ID: mdl-33820811

Microsatellite-stable (MSS) colorectal cancers are characterized by low mutation burden and limited immune-cell infiltration and thereby respond poorly to immunotherapy. Here, we report a case of metastatic MSS colorectal cancer with a robust anticancer immune response. The primary tumor was resected in 2012, and the patient received several cycles of chemotherapy until 2017. In 2018, the patient underwent a left hepatectomy to remove a new metastasis. Analysis of the metastatic tumor revealed a strong CD8+ T-cell response. A high frequency of CD8+ T cells coexpressed CD39 and CD103, a phenotype characteristic of tumor-reactive cells. Using whole-exome sequencing, we identified somatic mutations that generated peptides recognized by CD39+CD103+CD8+ T cells. The observed reactivity against the tumor was dominated by the response to a single mutation that emerged in the metastasis. Somatic mutations that were not immunogenic in the primary tumor led to robust CD8+ T-cell expansion later during disease progression. Our data suggest that the cytotoxic treatment regimen received by the patient might be responsible for this effect. Hence, the capacity of cytotoxic regimens to prime the immune system in colorectal cancer patients should be investigated further and might provide a rationale for combination with immunotherapy.


Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Liver Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Antigens, CD/immunology , Apyrase/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Hepatectomy , Humans , Integrin alpha Chains/immunology , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Male , Middle Aged
8.
Clin Cancer Res ; 27(9): 2481-2493, 2021 05 01.
Article En | MEDLINE | ID: mdl-33593880

PURPOSE: Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Antibodies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) have entered the therapeutic landscape in TNBC, but only a minority of patients benefit. A way to reliably enhance immunogenicity, T-cell infiltration, and predict responsiveness is critically needed. PATIENTS AND METHODS: Using mouse models of TNBC, we evaluate immune activation and tumor targeting of intratumoral IL12 plasmid followed by electroporation (tavokinogene telseplasmid; Tavo). We further present a single-arm, prospective clinical trial of Tavo monotherapy in patients with treatment refractory, advanced TNBC (OMS-I140). Finally, we expand these findings using publicly available breast cancer and melanoma datasets. RESULTS: Single-cell RNA sequencing of murine tumors identified a CXCR3 gene signature (CXCR3-GS) following Tavo treatment associated with enhanced antigen presentation, T-cell infiltration and expansion, and PD-1/PD-L1 expression. Assessment of pretreatment and posttreatment tissue from patients confirms enrichment of this CXCR3-GS in tumors from patients that exhibited an enhancement of CD8+ T-cell infiltration following treatment. One patient, previously unresponsive to anti-PD-L1 therapy, but who exhibited an increased CXCR3-GS after Tavo treatment, went on to receive additional anti-PD-1 therapy as their immediate next treatment after OMS-I140, and demonstrated a significant clinical response. CONCLUSIONS: These data show a safe, effective intratumoral therapy that can enhance antigen presentation and recruit CD8 T cells, which are required for the antitumor efficacy. We identify a Tavo treatment-related gene signature associated with improved outcomes and conversion of nonresponsive tumors, potentially even beyond TNBC.


CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Drug Resistance, Neoplasm/genetics , Interleukin-12/genetics , Plasmids/administration & dosage , Receptors, CXCR3/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Animals , Cell Line, Tumor , Disease Management , Disease Models, Animal , Electroporation , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunophenotyping , Injections, Intralesional , Iron Compounds , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Melanoma/therapy , Mice , Plasmids/genetics , Treatment Outcome , Triple Negative Breast Neoplasms/etiology , Triple Negative Breast Neoplasms/pathology
9.
Nat Commun ; 12(1): 1047, 2021 02 16.
Article En | MEDLINE | ID: mdl-33594075

Despite the success of checkpoint blockade in some cancer patients, there is an unmet need to improve outcomes. Targeting alternative pathways, such as costimulatory molecules (e.g. OX40, GITR, and 4-1BB), can enhance T cell immunity in tumor-bearing hosts. Here we describe the results from a phase Ib clinical trial (NCT02274155) in which 17 patients with locally advanced head and neck squamous cell carcinoma (HNSCC) received a murine anti-human OX40 agonist antibody (MEDI6469) prior to definitive surgical resection. The primary endpoint was to determine safety and feasibility of the anti-OX40 neoadjuvant treatment. The secondary objective was to assess the effect of anti-OX40 on lymphocyte subsets in the tumor and blood. Neoadjuvant anti-OX40 was well tolerated and did not delay surgery, thus meeting the primary endpoint. Peripheral blood phenotyping data show increases in CD4+ and CD8+ T cell proliferation two weeks after anti-OX40 administration. Comparison of tumor biopsies before and after treatment reveals an increase of activated, conventional CD4+ tumor-infiltrating lymphocytes (TIL) in most patients and higher clonality by TCRß sequencing. Analyses of CD8+ TIL show increases in tumor-antigen reactive, proliferating CD103+ CD39+ cells in 25% of patients with evaluable tumor tissue (N = 4/16), all of whom remain disease-free. These data provide evidence that anti-OX40 prior to surgery is safe and can increase activation and proliferation of CD4+ and CD8+ T cells in blood and tumor. Our work suggests that increases in the tumor-reactive CD103+ CD39+ CD8+ TIL could serve as a potential biomarker of anti-OX40 clinical activity.


Epitopes/immunology , Neoadjuvant Therapy , Receptors, OX40/antagonists & inhibitors , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/therapy , Biopsy , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Clone Cells , Disease-Free Survival , Human papillomavirus 16/physiology , Humans , Kaplan-Meier Estimate , Lymphocyte Activation/immunology , Lymphocyte Subsets/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoadjuvant Therapy/adverse effects , Receptors, Antigen, T-Cell/metabolism , Receptors, OX40/metabolism , Squamous Cell Carcinoma of Head and Neck/blood , Squamous Cell Carcinoma of Head and Neck/pathology , Stromal Cells/metabolism
10.
J Immunother Cancer ; 9(2)2021 02.
Article En | MEDLINE | ID: mdl-33589523

BACKGROUND: The interplay of immune and cancer cells takes place in the tumor microenvironment where multiple signals are exchanged. The transforming growth factor beta (TGFB) pathway is known to be dysregulated in lung cancer and can impede an effective immune response. However, the exact mechanisms are yet to be determined. Especially which cells respond and where does this signaling take place with respect to the local microenvironment. METHODS: Human non-small cell lung cancer samples were retrospectively analyzed by multiplexed immunohistochemistry for SMAD3 phosphorylation and programmed death ligand 1 expression in different immune cells with respect to their localization within the tumor tissue. Spatial relationships were studied to examine possible cell-cell interactions and analyzed in conjunction with clinical data. RESULTS: TGFB pathway activation in CD3, CD8, Foxp3 and CD68 cells, as indicated by SMAD3 phosphorylation, negatively impacts overall and partially disease-free survival of patients with lung cancerindependent of histological subtype. A high frequency of Foxp3 regulatory T cells positive for SMAD3 phosphorylation in close vicinity of CD8 T cells within the tumor discriminate a rapidly progressing group of patients with lung cancer. CONCLUSIONS: TGFB pathway activation of local immune cells within the tumor microenvironment impacts survival of early stage lung cancer. This might benefit patients not eligible for targeted therapies or immune checkpoint therapy as a therapeutic option to re-activate the local immune response.


B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Forkhead Transcription Factors/metabolism , Lung Neoplasms/pathology , Smad3 Protein/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Case-Control Studies , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Machine Learning , Neoplasm Staging , Phosphorylation , Retrospective Studies , Signal Transduction , Survival Analysis , Tissue Array Analysis , Transforming Growth Factor beta/metabolism
11.
Head Neck ; 43(2): 568-576, 2021 02.
Article En | MEDLINE | ID: mdl-33094869

BACKGROUND: This study aimed to analyze margin status and the impact of the immune elements on recurrence in patients with oral squamous cell carcinoma (OSCC), employing a prognostic biomarker, cumulative suppressive index (CSI), which reflects FoxP3+, PD-L1+, and CD8+ cell spatial relationships in the tumor microenvironment. METHODS: Cox proportional hazards regression was used to evaluate the interactive effect of the margin by CSI discrepancy (high, 3-4 vs low, 0-2) on recurrence free survival (RFS) and overall survival (OS) in 119 patients with stage I to IVA OSCC. RESULTS: In cases with negative margins, multivariable analysis showed high CSI was significantly associated with worse RFS (HR = 2.59, 95% CI [1.03, 6.49], P = .04) and OS (HR = 5.49, 95% CI [1.48, 20.35], P = .01) compared to low CSI. However, high CSI was not significantly associated with recurrence in cases with positive margins. CONCLUSIONS: Immune architecture analysis can augment our current histopathological risk assessment of margin status.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Carcinoma, Squamous Cell/surgery , Humans , Margins of Excision , Mouth Neoplasms/surgery , Neoplasm Recurrence, Local , Papillomaviridae , Prognosis , Squamous Cell Carcinoma of Head and Neck/surgery , Tumor Microenvironment
12.
Clin Cancer Res ; 26(12): 2827-2837, 2020 06 15.
Article En | MEDLINE | ID: mdl-32376655

PURPOSE: Tumors with low frequencies of checkpoint positive tumor-infiltrating lymphocytes (cpTIL) have a low likelihood of response to PD-1 blockade. We conducted a prospective multicenter phase II trial of intratumoral plasmid IL-12 (tavokinogene telseplasmid; "tavo") electroporation combined with pembrolizumab in patients with advanced melanoma with low frequencies of checkpoint positive cytotoxic lymphocytes (cpCTL). PATIENTS AND METHODS: Tavo was administered intratumorally days 1, 5, and 8 every 6 weeks while pembrolizumab (200 mg, i.v.) was administered every 3 weeks. The primary endpoint was objective response rate (ORR) by RECIST, secondary endpoints included duration of response, overall survival and progression-free survival. Toxicity was evaluated by the CTCAE v4. Extensive correlative analysis was done. RESULTS: The combination of tavo and pembrolizumab was well tolerated with adverse events similar to those previously reported with pembrolizumab alone. Patients had a 41% ORR (n = 22, RECIST 1.1) with 36% complete responses. Correlative analysis showed that the combination enhanced immune infiltration and sustained the IL-12/IFNγ feed-forward cycle, driving intratumoral cross-presenting dendritic cell subsets with increased TILs, emerging T cell receptor clones and, ultimately, systemic cellular immune responses. CONCLUSIONS: The combination of tavo and pembrolizumab was associated with a higher than expected response rate in this poorly immunogenic population. No new or unexpected toxicities were observed. Correlative analysis showed T cell infiltration with enhanced immunity paralleling the clinical activity in low cpCTL tumors.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Case-Control Studies , Female , Follow-Up Studies , Humans , Interleukin-12/administration & dosage , Male , Melanoma/pathology , Middle Aged , Prognosis , Prospective Studies
13.
Clin Cancer Res ; 25(19): 5818-5831, 2019 10 01.
Article En | MEDLINE | ID: mdl-31273010

PURPOSE: The CANON [CAVATAK in NON-muscle-invasive bladder cancer (NMIBC)] study evaluated a novel ICAM-1-targeted immunotherapeutic-coxsackievirus A21 as a novel oncolytic agent against bladder cancer. PATIENTS AND METHODS: Fifteen patients enrolled in this "window of opportunity" phase I study, exposing primary bladder cancers to CAVATAK prior to surgery. The first 9 patients received intravesical administration of monotherapy CAVATAK; in the second stage, 6 patients received CAVATAK with a subtherapeutic dose of mitomycin C, known to enhance expression of ICAM-1 on bladder cancer cells. The primary endpoint was to determine patient safety and maximum tolerated dose (MTD). Secondary endpoints were evidence of viral replication, induction of inflammatory cytokines, antitumor activity, and viral-induced changes in resected tissue. RESULTS: Clinical activity of CAVATAK was demonstrated by induction of tumor inflammation and hemorrhage following either single or multiple administrations of CAVATAK in multiple patients, and a complete resolution of tumor in 1 patient. Whether used alone or in combination with mitomycin C, CAVATAK caused marked inflammatory changes within NMIBC tissue biopsies by upregulating IFN-inducible genes, including both immune checkpoint inhibitory genes (PD-L1 and LAG3) and Th1-associated chemokines, as well as the induction of the innate activator RIG-I, compared with bladder cancer tissue from untreated patients. No significant toxicities were reported in any patient, from either virus or combination therapy. CONCLUSIONS: The acceptable safety profile of CAVATAK, proof of viral targeting, replication, and tumor cell death together with the virus-mediated increases in "immunological heat" within the tumor microenvironment all indicate that CAVATAK may be potentially considered as a novel therapeutic for NMIBC.


Immunotherapy/methods , Intercellular Adhesion Molecule-1/immunology , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapy , Administration, Intravesical , Aged , Aged, 80 and over , Feasibility Studies , Female , Humans , Immunotherapy/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Male , Maximum Tolerated Dose , Middle Aged , Molecular Targeted Therapy , Oncolytic Virotherapy/adverse effects , Tumor Microenvironment/immunology , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/virology
14.
Surg Oncol Clin N Am ; 28(3): 505-518, 2019 07.
Article En | MEDLINE | ID: mdl-31079803

In our opinion the most urgent needs to improve patient outcomes are: 1) a deeper ability to measure cancer immunobiology, and 2) increased availability of agents that, coupled with predictive biomarkers, will be used to tailor anti-cancer immunity. Tailoring effective immunotherapy will entail combinations of immunotherapeutics that augment priming of anti-cancer immunity, boost expansion of effector and memory cells of the T, B and NK lineage, amplify innate immunity and relieve checkpoint inhibition. Alternatives to inducing adaptive immunity to cancer include synthetic immunology that incorporate bi-specifics that target T cells to cancer or adoptive immunotherapy with gene-modified immune cells.


Antibodies, Monoclonal/therapeutic use , Cancer Vaccines/therapeutic use , Cell- and Tissue-Based Therapy/methods , Immunotherapy/methods , Neoplasms/therapy , Combined Modality Therapy , Humans , Neoplasms/immunology
15.
Methods Mol Biol ; 1913: 13-31, 2019.
Article En | MEDLINE | ID: mdl-30666596

Histomorphology has significantly changed over the last decades due to technological achievements in immunohistochemistry (IHC) for the visualization of specific proteins and in molecular pathology, particularly in the field of in situ hybridization of small oligonucleotides and amplification of DNA and RNA amplicons. With an increased availability of suitable methods, the demands regarding the observer of histomorphological slides were the supply of complex quantitative data as well as more information about protein expression and cell-cell interactions in tissue sections. Advances in fluorescence-based multiplexed IHC techniques, such as multispectral imaging (MSI), allow the quantification of multiple proteins at the same tissue section. In histopathology, it is a well-known technique for over a decade yet harboring serious problems concerning quantitative preciseness and tissue autofluorescence of multicolor staining when using formalin-fixed, paraffin-embedded (FFPE) tissue specimen. In recent years, milestones in tissue preparation, fluorescent dyes, hardware imaging, and software analysis were achieved including automated tissue segmentation (e.g., tumor vs. stroma) as well as in cellular and subcellular multiparameter analysis.This chapter covers the role that MSI plays in anatomic pathology for the analysis of FFPE tissue sections, discusses the technical aspects of MSI, and provides a review of its application in the characterization of immune cell infiltrates and beyond regarding its prognostic and predictive value and its use for guidance of clinical decisions for immunotherapeutic strategies.


Biomarkers, Tumor/analysis , Fluorescent Antibody Technique/methods , Image Processing, Computer-Assisted/methods , Neoplasms/pathology , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Fluorescent Antibody Technique/instrumentation , Humans , Image Processing, Computer-Assisted/instrumentation , Mice , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Neoplasms/drug therapy , Neoplasms, Experimental/pathology , Paraffin Embedding/instrumentation , Paraffin Embedding/methods , Software , Tissue Fixation/instrumentation , Tissue Fixation/methods
16.
Alcohol ; 76: 47-57, 2019 05.
Article En | MEDLINE | ID: mdl-30557779

We have reported that moderate prenatal alcohol exposure (PAE) elevates histamine H3 receptor-mediated inhibition of glutamatergic neurotransmission in dentate gyrus (DG), and that the H3 receptor antagonist ABT-239 ameliorates PAE-induced deficits in DG long-term potentiation. Here, we investigated whether PAE alters other markers of histaminergic neurotransmission. Long-Evans rat dams voluntarily consumed either a 0% or a 5% ethanol solution 4 h each day throughout gestation. Young adult female offspring from each prenatal treatment group were used in histidine decarboxylase (HDC) immunohistochemical studies of histamine neuron number in ventral hypothalamus, quantitative Western blotting studies of HDC expression in multiple brain regions, radiohistochemical studies of H2 receptor density in multiple brain regions, and in biochemical studies of H2 receptor-effector coupling in dentate gyrus. Rat dams consumed a mean of 1.90 g of ethanol/kg/day during pregnancy. This level of consumption did not affect maternal weight gain, offspring birth weight, or litter size. PAE did not affect the number of HDC-positive neurons in ventral hypothalamus. However, HDC expression was reduced in frontal cortex, dentate gyrus, and cerebellum of PAE rats compared to controls. Specific [125I]-iodoaminopotentidine binding to H2 receptors was not altered in any of the brain regions measured, nor was basal or H2 receptor agonist-stimulated cAMP accumulation in DG altered in PAE rats compared to controls. These results suggest that not all markers of histaminergic neurotransmission are altered by PAE. However, the observation that HDC levels were reduced in the same brain regions where elevated H3 receptor-effector coupling was observed previously raises the question of whether a cause-effect relationship exists between HDC expression and H3 receptor function in affected brain regions of PAE rats. This relationship, along with the question of why these effects occur in some, but not all brain regions, requires more-detailed investigation.


Cerebellum/metabolism , Dentate Gyrus/metabolism , Frontal Lobe/metabolism , Histamine/metabolism , Histidine Decarboxylase/biosynthesis , Prenatal Exposure Delayed Effects/metabolism , Receptors, Histamine H2/metabolism , Animals , Cell Count , Female , Hypothalamus/drug effects , Male , Neurons/drug effects , Pregnancy , Radioligand Assay , Rats
17.
Oncoimmunology ; 7(12): e1405206, 2018.
Article En | MEDLINE | ID: mdl-30524879

Background: Tumor microenvironment may have a key role in providing immunological markers that can help predict clinical response to treatment with checkpoint inhibitors. We investigated whether the baseline expression of PD-L1 in advanced melanoma patients treated with ipilimumab may correlate with clinical outcome. Methods: PD-L1 expression was assessed in 114 patients with advanced melanoma treated with ipilimumab and, in a cohort of 77 patients, a comprehensive assessment using multispectral imaging to assess the presence and distribution of CD3+, CD8+, CD163+, FOXP3+ and PD-L1+ cells inside and at periphery of the tumor was performed. Results: PD-L1 status alone was not a predictive biomarker for response or survival. There was an association between clinical benefit from ipilimumab therapy with the coexistence of low densities of CD8+ and high densities of CD163+ PD-L1+ cells at the periphery of the tumor. Conclusions: To explain the association of this peculiar microenvironment with clinical benefit from ipilimumab, we proposed a model where baseline CD8 cells levels are low due to inhibitory effect of Tregs and to pro-tumor activity of TAM M2 (CD163+ PD-L1+ cells). Ipilimumab treatment causes a decrease of Treg cells, mediated by ADCC from macrophages, with a concomitant change in TAM polarization that switches from M2 to M1 with a subsequent attraction of CD8 cells and the increase of antitumor response.

19.
Clin Cancer Res ; 24(17): 4126-4136, 2018 09 01.
Article En | MEDLINE | ID: mdl-30084836

Purpose: Pituitary adenomas are one of the most common benign neoplasms of the central nervous system. Although emerging evidence suggests roles for both genetic and epigenetic factors in tumorigenesis, the degree to which these factors contribute to disease remains poorly understood.Experimental Design: A multiplatform analysis was performed to identify the genomic and epigenomic underpinnings of disease among the three major subtypes of surgically resected pituitary adenomas in 48 patients: growth hormone (GH)-secreting (n = 17), adrenocorticotropic hormone (ACTH)-secreting (n = 13, including 3 silent-ACTH adenomas), and endocrine-inactive (n = 18). Whole-exome sequencing was used to profile the somatic mutational landscape, whole-transcriptome sequencing was used to identify disease-specific patterns of gene expression, and array-based DNA methylation profiling was used to examine genome-wide patterns of DNA methylation.Results: Recurrent single-nucleotide and small indel somatic mutations were infrequent among the three adenoma subtypes. However, somatic copy-number alterations (SCNA) were identified in all three pituitary adenoma subtypes. Methylation analysis revealed adenoma subtype-specific DNA methylation profiles, with GH-secreting adenomas being dominated by hypomethylated sites. Likewise, gene-expression patterns revealed adenoma subtype-specific profiles. Integrating DNA methylation and gene-expression data revealed that hypomethylation of promoter regions are related with increased expression of GH1 and SSTR5 genes in GH-secreting adenomas and POMC gene in ACTH-secreting adenomas. Finally, multispectral IHC staining of immune-related proteins showed abundant expression of PD-L1 among all three adenoma subtypes.Conclusions: Taken together, these data stress the contribution of epigenomic alterations to disease-specific etiology among adenoma subtypes and highlight potential targets for future immunotherapy-based treatments. This article reveals novel insights into the epigenomics underlying pituitary adenomas and highlights how differences in epigenomic states are related to important transcriptome alterations that define adenoma subtypes. Clin Cancer Res; 24(17); 4126-36. ©2018 AACR.


DNA Copy Number Variations/genetics , DNA Methylation/genetics , Epigenomics , Pituitary Neoplasms/genetics , Acromegaly/genetics , Acromegaly/pathology , Adrenocorticotropic Hormone/genetics , Adult , Aged , B7-H1 Antigen/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cushing Syndrome/genetics , Cushing Syndrome/pathology , Female , Gene Expression Regulation, Neoplastic , Genome, Human , Growth Hormone/genetics , Humans , INDEL Mutation/genetics , Male , Middle Aged , Pituitary Neoplasms/classification , Pituitary Neoplasms/pathology , Promoter Regions, Genetic/genetics , Receptors, Somatostatin/genetics , Transcriptome/genetics , Exome Sequencing
20.
Clin Exp Metastasis ; 35(5-6): 403-412, 2018 08.
Article En | MEDLINE | ID: mdl-30022365

Cancer microenvironment is the critical battle ground between the cancer cells and host response. Thus, more emphasis is directed to study the relationship between cancer cells and the stromal cells. Multiplex microscopy is an emerging technique in which multiple cell populations within the cancer microenvironment may be stained so that spatial relationship between cancer cells and, in particular, the immune cells may be studied during different stages of cancer development. Recent discovery of mutational burden and neoantigens in cancer has opened new landscapes in the interaction of host immune cells and cancer neoantigens. The emerging role of miRNAs may become an added dimension to study cancer beyond traditional pathway of DNA directed RNA being associated with the malignant behavior of cancer. Circulating tumor cells, cancer markers and ctDNA can be used as markers for circulating cancer cells in the blood. Further studies are needed to validate if liquid biopsy of cancer may become a routine clinical tool to screen cancer or follow patients for recurrence or responses to treatment.


Antigens, Neoplasm/blood , Biomarkers, Tumor/blood , Circulating Tumor DNA/blood , Neoplasms/blood , Humans , Liquid Biopsy , Mutation , Neoplasm Metastasis , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment/genetics
...