Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Sci Rep ; 14(1): 12680, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902275

RESUMEN

17ß-estradiol, the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo brain 18F-fluoroestradiol (18F-FES) Positron Emission Tomography (PET) study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age, plasma estradiol and sex hormone binding globulin, and were highly consistent, correctly classifying all women as being postmenopausal or premenopausal. Higher ER density in target regions was associated with poorer memory performance for both postmenopausal and perimenopausal groups, and predicted presence of self-reported mood and cognitive symptoms after menopause. These findings provide novel insights on brain ER density modulation by female neuroendocrine aging, with clinical implications for women's health.


Asunto(s)
Envejecimiento , Encéfalo , Cognición , Tomografía de Emisión de Positrones , Receptores de Estrógenos , Humanos , Femenino , Persona de Mediana Edad , Cognición/fisiología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Envejecimiento/metabolismo , Receptores de Estrógenos/metabolismo , Adulto , Estradiol/sangre , Estradiol/metabolismo , Sistemas Neurosecretores/metabolismo , Menopausia/metabolismo
2.
Lancet Neurol ; 23(1): 60-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101904

RESUMEN

BACKGROUND: Cerliponase alfa is a recombinant human tripeptidyl peptidase 1 (TPP1) enzyme replacement therapy for the treatment of neuronal ceroid lipofuscinosis type 2 (CLN2 disease), which is caused by mutations in the TPP1 gene. We aimed to determine the long-term safety and efficacy of intracerebroventricular cerliponase alfa in children with CLN2 disease. METHODS: This analysis includes cumulative data from a primary 48-week, single-arm, open-label, multicentre, dose-escalation study (NCT01907087) and the 240-week open-label extension with 6-month safety follow-up, conducted at five hospitals in Germany, Italy, the UK, and the USA. Children aged 3-16 years with CLN2 disease confirmed by genetic analysis and enzyme testing were eligible for inclusion. Treatment was intracerebroventricular infusion of 300 mg cerliponase alfa every 2 weeks. Historical controls with untreated CLN2 disease in the DEM-CHILD database were used as a comparator group. The primary efficacy outcome was time to an unreversed 2-point decline or score of 0 in the combined motor and language domains of the CLN2 Clinical Rating Scale. This extension study is registered with ClinicalTrials.gov, NCT02485899, and is complete. FINDINGS: Between Sept 13, 2013, and Dec 22, 2014, 24 participants were enrolled in the primary study (15 female and 9 male). Of those, 23 participants were enrolled in the extension study, conducted between Feb 2, 2015, and Dec 10, 2020, and received 300 mg cerliponase alfa for a mean of 272·1 (range 162·1-300·1) weeks. 17 participants completed the extension and six discontinued prematurely. Treated patients were significantly less likely than historical untreated controls to have an unreversed 2-point decline or score of 0 in the combined motor and language domains (hazard ratio 0·14, 95% CI 0·06 to 0·33; p<0·0001). All participants experienced at least one adverse event and 21 (88%) experienced a serious adverse event; nine participants experienced intracerebroventricular device-related infections, with nine events in six participants resulting in device replacement. There were no study discontinuations because of an adverse event and no deaths. INTERPRETATION: Cerliponase alfa over a mean treatment period of more than 5 years was seen to confer a clinically meaningful slowing of decline of motor and language function in children with CLN2 disease. Although our study does not have a contemporaneous control group, the results provide crucial insights into the effects of long-term treatment. FUNDING: BioMarin Pharmaceutical.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Humanos , Masculino , Femenino , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/uso terapéutico , Tripeptidil Peptidasa 1 , Proteínas Recombinantes/efectos adversos
3.
Hum Gene Ther ; 34(21-22): 1095-1106, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37624734

RESUMEN

Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.


Asunto(s)
Dependovirus , Enfermedades del Sistema Nervioso , Animales , Dependovirus/genética , Radioisótopos de Yodo , Cápside , Distribución Tisular , Transducción Genética , Terapia Genética/métodos , Tomografía de Emisión de Positrones , Vectores Genéticos/genética , Técnicas de Transferencia de Gen
4.
Res Sq ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909660

RESUMEN

17ß-estradiol,the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo multi-modality neuroimaging study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age and plasma estradiol levels, and were highly consistent, correctly classifying all women as being post-menopausal or not. Higher ER density was generally associated with lower gray matter volume and blood flow, and with higher mitochondria ATP production, possibly reflecting compensatory mechanisms. Additionally, ER density predicted changes in thermoregulation, mood, cognition, and libido. Our data provide evidence that ER density impacts brainstructure, perfusion and energy production during female endocrine aging, with clinical implications for women's health.

5.
NMR Biomed ; 35(12): e4802, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35834176

RESUMEN

Lack of a body-sized, bore-mounted, radiofrequency (RF) body coil for ultrahigh field (UHF) magnetic resonance imaging (MRI) is one of the major drawbacks of UHF, hampering the clinical potential of the technology. Transmit field (B1 ) nonuniformity and low specific absorption rate (SAR) efficiencies in UHF MRI are two challenges to be overcome. To address these problems, and ultimately provide a pathway for the full clinical potential of the modality, we have designed and simulated two-dimensional cylindrical high-pass ladder (2D c-HPL) architectures for clinical bore-size dimensions, and demonstrated a simplified proof of concept with a head-sized prototype at 7 T. A new dispersion relation has been derived and electromagnetic simulations were used to verify coil modes. The coefficient of variation (CV) for brain, cerebellum, heart, and prostate tissues after B1 + shimming in silico is reported and compared with previous works. Three prototypes were designed in simulation: a head-sized, body-sized, and long body-sized coil. The head-sized coil showed a CV of 12.3%, a B1 + efficiency of 1.33 µT/√W, and a SAR efficiency of 2.14 µT/√(W/kg) for brain simulations. The body-sized 2D c-HPL coil was compared with same-sized transverse electromagnetic (TEM) and birdcage coils in silico with a four-port circularly polarized mode excitation. Improved B1 + uniformity (26.9%) and SAR efficiency (16% and 50% better than birdcage and TEM coils, respectively) in spherical phantoms was observed. We achieved a CV of 12.3%, 4.9%, 16.7%, and 2.8% for the brain, cerebellum, heart, and prostate, respectively. Preliminary imaging results for the head-sized coil show good agreement between simulation and experiment. Extending the 1D birdcage coil concept to 2D c-HPLs provides improved B1 + uniformity and SAR efficiency.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Cabeza , Encéfalo/diagnóstico por imagen
6.
J Orthop Surg (Hong Kong) ; 30(1): 23094990221076654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35245156

RESUMEN

BACKGROUND: The availability of non-invasive means to evaluate and monitor tendon-bone healing processes in-vivo is limited. Micro Positron-Emission-Tomography (µPET) using 18F-Fluoride is a minimally invasive imaging modality, with which osteoblast activity and bone turnover can be assessed. The aim of this study was to investigate the use of serial in-vivo µPET/CT scans to evaluate bone turnover along the graft-tunnel interface in a rat ACL (anterior cruciate ligament) reconstruction model. METHODS: Unilateral autograft ACL reconstruction was performed in six rats. µPET/CT-scans using 18F-Fluoride were performed 7, 14, 21, and 28 days postoperatively. Standard uptake values (SUV) were calculated for three tunnel regions (intraarticular aperture (IAA), mid-tunnel, and extraarticular aperture (EAA)) of the proximal tibia. Animals were sacrificed at 28 days and evaluated with µCT and histological analysis. RESULTS: SUVs in both bone tunnels showed an increased 18F-Fluoride uptake at 7 days when compared to 14, 21, and 28 days. SUVs showed a gradient on the tibial side, with most bone turnover in the IAA and least in the EAA. At 7, 14, 21, and 28 days, there were significantly higher SUV values in the IAA compared to the EAA (p = .01, < .01, < .01, < .01). SUVs positively correlated with new bone volumetric density obtained with µCT (r = 0.449, p = .013). Volumetric density of newly formed bone detected on µCT correlated with osteoblast numbers observed along the tunnels in histological sections (r = 0.452, p < .016). CONCLUSIONS: Serial in-vivo µPET/CT-scanning has the potential to provide insight into bone turnover and therefore osteoblastic activity during the healing process. As a result, it allows us to directly measure the effect of interventional strategies in tendon-bone healing.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Animales , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Fémur/cirugía , Proyectos Piloto , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas , Tendones/cirugía , Tibia/diagnóstico por imagen , Tibia/patología , Tibia/cirugía
7.
Hum Gene Ther ; 32(11-12): 563-580, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33380277

RESUMEN

Metachromatic leukodystrophy, a fatal pediatric neurodegenerative lysosomal storage disease caused by mutations in the arylsulfatase A (ARSA) gene, is characterized by intracellular accumulation of sulfatides in the lysosomes of cells of the central nervous system (CNS). In previous studies, we have demonstrated efficacy of AAVrh.10hARSA, an adeno-associated virus (AAV) serotype rh.10 vector coding for the human ARSA gene to the CNS of a mouse model of the disease, and that catheter-based intraparenchymal administration of AAVrh.10hARSA to the CNS of nonhuman primates (NHPs) white matter results in widespread expression of ARSA. As a formal dose-escalating safety/toxicology study, we assessed the safety of intraparenchymal delivery of AAVrh.10hARSA vector to 12 sites in the white matter of the CNS of NHPs at 2.85 × 1010 (total low dose, 2.4 × 109 genome copies [gc]/site) and 1.5 × 1012 (total high dose, 1.3 × 1011 gc/site) gc, compared to AAVrh.10Null (1.5 × 1012 gc total, 1.3 × 1011 gc/site) as a vector control, and phosphate buffered saline for a sham surgical control. No significant adverse effects were observed in animals treated with low dose AAVrh.10hARSA. However, animals treated with the high dose AAVrh.10ARSA and the high dose Null vector had highly localized CNS abnormalities on magnetic resonance imaging scans at the sites of catheter infusions, and histopathology demonstrated that these sites were associated with infiltrates of T cells, B cells, microglial cells, and/or macrophages. Although these findings had no clinical consequences, these safety data contribute to understanding the dose limits for CNS white matter direct intraparenchymal administration of AAVrh.10 vectors for treatment of CNS disorders.


Asunto(s)
Leucodistrofia Metacromática , Animales , Sistema Nervioso Central , Cerebrósido Sulfatasa/genética , Niño , Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Ratones
8.
Sci Transl Med ; 12(572)2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268510

RESUMEN

Late infantile Batten disease (CLN2 disease) is an autosomal recessive, neurodegenerative lysosomal storage disease caused by mutations in the CLN2 gene encoding tripeptidyl peptidase 1 (TPP1). We tested intraparenchymal delivery of AAVrh.10hCLN2, a nonhuman serotype rh.10 adeno-associated virus vector encoding human CLN2, in a nonrandomized trial consisting of two arms assessed over 18 months: AAVrh.10hCLN2-treated cohort of 8 children with mild to moderate disease and an untreated, Weill Cornell natural history cohort consisting of 12 children. The treated cohort was also compared to an untreated European natural history cohort of CLN2 disease. The vector was administered through six burr holes directly to 12 sites in the brain without immunosuppression. In an additional safety assessment under a separate protocol, five children with severe CLN2 disease were treated with AAVrh.10hCLN2. The therapy was associated with a variety of expected adverse events, none causing long-term disability. Induction of systemic anti-AAVrh.10 immunity was mild. After therapy, the treated cohort had a 1.3- to 2.6-fold increase in cerebral spinal fluid TPP1. There was a slower loss of gray matter volume in four of seven children by MRI and a 42.4 and 47.5% reduction in the rate of decline of motor and language function, compared to Weill Cornell natural history cohort (P < 0.04) and European natural history cohort (P < 0.0001), respectively. Intraparenchymal brain administration of AAVrh.10hCLN2 slowed the progression of disease in children with CLN2 disease. However, improvements in vector design and delivery strategies will be necessary to halt disease progression using gene therapy.


Asunto(s)
Dependovirus , Lipofuscinosis Ceroideas Neuronales , Aminopeptidasas/genética , Encéfalo , Niño , Dependovirus/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Terapia Genética , Humanos , Imagen por Resonancia Magnética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Tripeptidil Peptidasa 1
9.
Hum Gene Ther ; 31(23-24): 1237-1259, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33233962

RESUMEN

A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.


Asunto(s)
Encéfalo/diagnóstico por imagen , Dependovirus/genética , Radioisótopos de Yodo/farmacología , Imagen de Cuerpo Entero/métodos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Dependovirus/química , Vectores Genéticos/genética , Humanos , Radioisótopos de Yodo/química , Primates , Distribución Tisular/efectos de los fármacos
10.
Sci Rep ; 8(1): 15229, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323181

RESUMEN

Late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a rare lysosomal storage disorder caused by a monogenetic deficiency of tripeptidyl peptidase-1 (TPP1). Despite knowledge that lipofuscin is the hallmark disease product, the relevant TPP1 substrate and its role in neuronal physiology/pathology is unknown. We hypothesized that untargeted metabolite profiling of cerebrospinal fluid (CSF) could be used as an effective tool to identify disease-associated metabolic disruptions in CLN2 disease, offering the potential to identify biomarkers that inform on disease severity and progression. Accordingly, a mass spectrometry-based untargeted metabolite profiling approach was employed to differentiate CSF from normal vs. CLN2 deficient individuals. Of 1,433 metabolite features surveyed, 29 linearly correlated with currently employed disease severity scores. With tandem mass spectrometry 8 distinct metabolite identities were structurally confirmed based on retention time and fragmentation pattern matches, vs. standards. These putative CLN2 biomarkers include 7 acetylated species - all attenuated in CLN2 compared to controls. Because acetate is the major bioenergetic fuel for support of mitochondrial respiration, deficient acetylated species in CSF suggests a brain energy defect that may drive neurodegeneration. Targeted analysis of these metabolites in CSF of CLN2 patients offers a powerful new approach for monitoring CLN2 disease progression and response to therapy.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Encéfalo/metabolismo , Metaboloma/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Acetatos/metabolismo , Adolescente , Adulto , Anciano , Aminopeptidasas/líquido cefalorraquídeo , Aminopeptidasas/genética , Animales , Encéfalo/patología , Niño , Preescolar , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/líquido cefalorraquídeo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Lipofuscinosis Ceroideas Neuronales/líquido cefalorraquídeo , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/metabolismo , Neuronas/patología , Serina Proteasas/líquido cefalorraquídeo , Serina Proteasas/genética , Índice de Severidad de la Enfermedad , Tripeptidil Peptidasa 1 , Adulto Joven
11.
N Engl J Med ; 378(20): 1898-1907, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29688815

RESUMEN

BACKGROUND: Recombinant human tripeptidyl peptidase 1 (cerliponase alfa) is an enzyme-replacement therapy that has been developed to treat neuronal ceroid lipofuscinosis type 2 (CLN2) disease, a rare lysosomal disorder that causes progressive dementia in children. METHODS: In a multicenter, open-label study, we evaluated the effect of intraventricular infusion of cerliponase alfa every 2 weeks in children with CLN2 disease who were between the ages of 3 and 16 years. Treatment was initiated at a dose of 30 mg, 100 mg, or 300 mg; all the patients then received the 300-mg dose for at least 96 weeks. The primary outcome was the time until a 2-point decline in the score on the motor and language domains of the CLN2 Clinical Rating Scale (which ranges from 0 to 6, with 0 representing no function and 3 representing normal function in each of the two domains), which was compared with the time until a 2-point decline in 42 historical controls. We also compared the rate of decline in the motor-language score between the two groups, using data from baseline to the last assessment with a score of more than 0, divided by the length of follow-up (in units of 48 weeks). RESULTS: Twenty-four patients were enrolled, 23 of whom constituted the efficacy population. The median time until a 2-point decline in the motor-language score was not reached for treated patients and was 345 days for historical controls. The mean (±SD) unadjusted rate of decline in the motor-language score per 48-week period was 0.27±0.35 points in treated patients and 2.12±0.98 points in 42 historical controls (mean difference, 1.85; P<0.001). Common adverse events included convulsions, pyrexia, vomiting, hypersensitivity reactions, and failure of the intraventricular device. In 2 patients, infections developed in the intraventricular device that was used to administer the infusion, which required antibiotic treatment and device replacement. CONCLUSIONS: Intraventricular infusion of cerliponase alfa in patients with CLN2 disease resulted in less decline in motor and language function than that in historical controls. Serious adverse events included failure of the intraventricular device and device-related infections. (Funded by BioMarin Pharmaceutical and others; CLN2 ClinicalTrials.gov numbers, NCT01907087 and NCT02485899 .).


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/uso terapéutico , Terapia de Reemplazo Enzimático , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Adolescente , Niño , Preescolar , Demencia/prevención & control , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/efectos adversos , Progresión de la Enfermedad , Terapia de Reemplazo Enzimático/efectos adversos , Femenino , Estudio Históricamente Controlado , Humanos , Infusiones Intraventriculares , Estimación de Kaplan-Meier , Desarrollo del Lenguaje , Masculino , Destreza Motora/efectos de los fármacos , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Lipofuscinosis Ceroideas Neuronales/psicología , Proteínas Recombinantes/efectos adversos , Tripeptidil Peptidasa 1
12.
J Neurosurg ; 130(3): 989-998, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29701544

RESUMEN

OBJECTIVE: Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS: Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS: Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent with prior observations, no evidence of brain inflammation was observed from 2 weeks to 6 months following MRgFUS BBB opening, despite delivery of a virus and expression of a foreign protein in target neurons. CONCLUSIONS: This study demonstrates that transitory BBB disruption using MRgFUS can be a safe and efficient method for site-specific delivery of viral vectors to the brain, raising the potential for noninvasive focal human gene therapy for neurological disorders.


Asunto(s)
Encéfalo/diagnóstico por imagen , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Animales , Barrera Alveolocapilar/patología , Encéfalo/patología , Dependovirus/inmunología , Técnicas de Transferencia de Gen/efectos adversos , Terapia Genética/efectos adversos , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Inflamación/patología , Imagen por Resonancia Magnética , Masculino , Enfermedades del Sistema Nervioso/terapia , Ratas , Ratas Sprague-Dawley , Transgenes/genética , Ultrasonografía
13.
Hum Gene Ther Clin Dev ; 29(1): 24-47, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29409358

RESUMEN

Alzheimer's disease (AD) is a progressive degenerative neurological disorder affecting nearly one in nine elderly people in the United States. Population studies have shown that an inheritance of the apolipoprotein E (APOE) variant APOE4 allele increases the risk of developing AD, whereas APOE2 homozygotes are protected from late-onset AD. It was hypothesized that expression of the "protective" APOE2 variant by genetic modification of the central nervous system (CNS) of APOE4 homozygotes could reverse or prevent progressive neurologic damage. To assess the CNS distribution and safety of APOE2 gene therapy for AD in a large-animal model, intraparenchymal, intracisternal, and intraventricular routes of delivery to the CNS of nonhuman primates of AAVrh.10hAPOE2-HA, an AAVrh.10 serotype coding for an HA-tagged human APOE2 cDNA sequence, were evaluated. To evaluate the route of delivery that achieves the widest extent of APOE2 expression in the CNS, the expression of APOE2 in the CNS was evaluated 2 months following vector administration for APOE2 DNA, mRNA, and protein. Finally, using conventional toxicology assays, the safety of the best route of delivery was assessed. The data demonstrated that while all three routes are capable of mediating ApoE2 expression in AD relevant regions, intracisternal delivery of AAVrh.10hAPOE2-HA safely mediated wide distribution of ApoE2 with the least invasive surgical intervention, thus providing the optimal strategy to deliver vector-mediated human APOE2 to the CNS.


Asunto(s)
Enfermedad de Alzheimer/terapia , Apolipoproteína E2/genética , Sistema Nervioso Central/metabolismo , Terapia Genética/métodos , Enfermedad de Alzheimer/genética , Animales , Apolipoproteína E2/metabolismo , Apolipoproteína E4/genética , Chlorocebus aethiops , Dependovirus/genética , Terapia Genética/efectos adversos , Vectores Genéticos/genética , Células HEK293 , Humanos , Masculino
14.
J Neurosurg ; 129(2): 315-323, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29053074

RESUMEN

OBJECTIVE The objective of this study was to evaluate the utility of diffusion tensor imaging (DTI) tractography-based targeting of the dentatorubrothalamic tract (DRT) for magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy in patients with essential tremor (ET) and correlate postprocedural tract disruption with clinical outcomes. METHODS Four patients received preprocedural and immediate postprocedural DTI in addition to traditional anatomical MRI sequences for MRgFUS thalamotomy. Optimal ablation sites were selected based on the patient-specific location of the DRT as demonstrated by DTI (direct targeting) and correlated with traditional atlas-based measurements for thalamic ventral intermediate nucleus (Vim) lesioning (indirect targeting). Fiber tracts were displayed three-dimensionally during the procedure and used in conjunction with clinical signs of tremor control for fine correction of the ablation site. Immediately following the conclusion of the procedure, the MRgFUS head frame was removed and patients were placed in a 32-channel MRI head coil for follow-up DTI and anatomical MRI sequences. RESULTS All patients had excellent postoperative tremor control and successful pre- and postprocedural DTI fiber tracking of the corticospinal tract, medial lemniscus, and DRT. Immediate postprocedure DTI failed to track the DRT ipsilateral to the lesion site with a preserved contralateral DRT, coincident with substantial resolution of contralateral tremor. CONCLUSIONS DTI can reliably identify the optimal ablation target and demonstrates tract disruption on immediate postprocedural imaging. A clinical improvement of ET was observed immediately following the procedure, correlating with DRT disruption and suggesting that interruption of the DRT is a consequence of clinically successful MRgFUS thalamotomy. These findings may have utility for both MRgFUS procedure planning in surgically naive patients and retreatment of patients who have previously undergone unsuccessful thalamic Vim lesioning.


Asunto(s)
Imagen de Difusión Tensora , Temblor Esencial/diagnóstico por imagen , Neuroimagen/métodos , Cirugía Asistida por Computador , Tálamo/cirugía , Ultrasonografía Intervencional , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal , Procedimientos Neuroquirúrgicos , Resultado del Tratamiento
15.
PM R ; 9(12): 1225-1235, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28483684

RESUMEN

BACKGROUND: Although important for dosing and dilution, there are few data describing botulinum toxin (BT) movement in human muscle. OBJECTIVE: To better understand BT movement within human muscle. DESIGN: Proof-of-concept study with descriptive case series. SETTING: Outpatient academic practice. PARTICIPANTS: Five subjects with stroke who were BT naive with a mean age of 60.4 ± 14 years and time poststroke of 4.6 ± 3.7 years. METHODS: Three standardized injections were given to the lateral gastrocnemius muscle (LGM): 2 contained 25 units (U) of onabotulinumtoxinA (Botox) in 0.25 mL of saline solution and the third 0.25 mL of saline solution only. The tibialis anterior muscle (TAM) was not injected in any subject. A leg magnetic resonance image was obtained at baseline, 2 months, and 3 months later with a 3.0 Tesla Siemens scanner. Three muscles, the LGM, lateral soleus muscle (LSM), and TAM, were manually outlined on the T2 mapping sequence at each time point. A histogram of T2 relaxation times (T2-RT) for all voxels at baseline was used to calculate a mean and standard deviation (SD) T2-RT for each muscle. Botulinum toxin muscle effect (BTME) at 2 months and 3 months was defined as a subject- and muscle-specific T2-RT voxel threshold ≥3 SD above the baseline mean at or near BT injection sites. MAIN OUTCOME MEASURES: BTME volume for each leg magnetic resonance imaging slice at 3 time points and 3 muscles for all subjects. RESULTS: One subject missed the 3-month scan, leaving 18 potential observations of BTME. Little to no BTME effect was seen in the noninjected TAM. A BTME was detected in the LGM in 13 of 18 possible observations, and no effect was detected in 5 observations. Possible BTME effect was seen in the LSM in 3 subjects due to either diffusion through fascia or needle misplacement. Volume of BTME, as defined here, appeared to be substantially greater than the 0.25-mL injection volume. CONCLUSIONS: This descriptive case series is among the first attempts to quantify BTME within human muscle. Our findings are preliminary and are limited by a few inconsistencies. However, we conclude that use of magnetic resonance imaging to detect the volume of BTME is feasible and may assist researchers in modeling the spread and diffusion of BT within human muscle. LEVEL OF EVIDENCE: IV.


Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Imagen por Resonancia Magnética/métodos , Contracción Muscular/fisiología , Músculo Esquelético/patología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/diagnóstico , Anciano , Femenino , Estudios de Seguimiento , Humanos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Fármacos Neuromusculares/administración & dosificación , Reproducibilidad de los Resultados , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo
16.
BJU Int ; 119(3): 414-423, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27154761

RESUMEN

OBJECTIVES: To determine imaging protocol parameters for characterization of prostate tissue at histological length scales. MATERIAL AND METHODS: Rapid acquisition with relaxation enhancement, spin echo and gradient echo fast low angle shot data were acquired using ex vivo 3-Tesla or 7-Tesla magnetic field strengths from fresh prostatectomy specimens (n = 15) obtained from either organ donor or patients with prostate cancer (PCa). To achieve the closest correspondence between histopathological components and magnetic resonance imaging (MRI) results, in terms of resolution and sectioning planes, multiple high-resolution imaging protocols (ranging from a few minutes to overnight) were tested. Ductograms were generated as part of image post-processing. Specimens were subsequently submitted for histopathological evaluation. RESULTS: A total of seven imaging protocols were tested. Ex vivo 7-Tesla MRI identified normal components of prostate glands, including ducts, blood vessels, concretions and stroma at a spatial resolution of 60 × 60 × 60 µm3 to 107 × 107 × 500 µm3 . Malignant glands and nests of tumour cells identified at 60 × 60 × 90 µm3 were highly similar to low-magnification (×2) histopathology. Ductograms enhanced the differentiation between benign and malignant glands. The results of the present study were encouraging, and further work is warranted with a larger sample size. CONCLUSION: We showed that critical histopathological features of the prostate gland can be identified with high-resolution ex vivo MRI examination and this offers promise that MRI microscopy of PCa will ultimately be possible in vivo.


Asunto(s)
Imagen por Resonancia Magnética , Próstata/anatomía & histología , Próstata/patología , Neoplasias de la Próstata/patología , Humanos , Masculino , Microscopía/métodos , Próstata/cirugía , Prostatectomía , Neoplasias de la Próstata/cirugía
17.
J Cereb Blood Flow Metab ; 37(4): 1223-1235, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27221244

RESUMEN

We analyze the pulsatile signal component of dynamic echo planar imaging data from the brain by modeling the dependence between local temporal and spatial signal variability. The resulting magnetic resonance advection imaging maps depict the location of major arteries. Color direction maps allow for visualization of the direction of blood vessels. The potential significance of magnetic resonance advection imaging maps is demonstrated on a functional magnetic resonance imaging data set of 19 healthy subjects. A comparison with the here introduced pulse coherence maps, in which the echo planar imaging signal is correlated with a cardiac pulse signal, shows that the magnetic resonance advection imaging approach results in a better spatial definition without the need for a pulse reference. In addition, it is shown that magnetic resonance advection imaging velocities can be estimates of pulse wave velocities if certain requirements are met, which are specified. Although for this application magnetic resonance advection imaging velocities are not quantitative estimates of pulse wave velocities, they clearly depict local pulsatile dynamics. Magnetic resonance advection imaging can be applied to existing dynamic echo planar imaging data sets with sufficient spatiotemporal resolution. It is discussed whether magnetic resonance advection imaging might have the potential to evolve into a biomarker for the health of the cerebrovascular system.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Imagen Eco-Planar/métodos , Angiografía por Resonancia Magnética/métodos , Modelos Biológicos , Mapeo Encefálico , Arterias Cerebrales/anatomía & histología , Humanos
18.
PLoS One ; 11(10): e0162978, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711187

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM.


Asunto(s)
Cetuximab/genética , Cetuximab/inmunología , Receptores ErbB/inmunología , Terapia Genética/métodos , Glioblastoma/genética , Glioblastoma/terapia , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Cetuximab/uso terapéutico , Dependovirus/genética , Regulación Neoplásica de la Expresión Génica/genética , Vectores Genéticos/genética , Glioblastoma/patología , Humanos , Masculino , Ratones , Análisis de Supervivencia
19.
Sci Rep ; 5: 17435, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26639673

RESUMEN

Pathologic evaluation of breast specimens requires a fixation and staining procedure of at least 12 hours duration, delaying diagnosis and post-operative planning. Here we introduce an MRI technique with a custom-designed radiofrequency resonator for imaging breast and lymph tissue with sufficient spatial resolution and speed to guide pathologic interpretation and offer value in clinical decision making. In this study, we demonstrate the ability to image breast and lymphatic tissue using 7.0 Tesla MRI, achieving a spatial resolution of 59 × 59 × 94 µm(3) with a signal-to-noise ratio of 15-20, in an imaging time of 56 to 70 minutes. These are the first MR images to reveal characteristic pathologic features of both benign and malignant breast and lymph tissue, some of which were discernible by blinded pathologists who had no prior training in high resolution MRI interpretation.


Asunto(s)
Mama/patología , Mama/cirugía , Espectroscopía de Resonancia Magnética/métodos , Microscopía/métodos , Diagnóstico por Imagen , Femenino , Humanos , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Imagen por Resonancia Magnética , Encuestas y Cuestionarios
20.
J Orthop Res ; 33(3): 366-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25410523

RESUMEN

This study characterizes changes in subchondral bone circulation in OA and examines relationships to bone structure and cartilage degeneration in Dunkin-Hartley guinea pigs. We have used dynamic contrast-enhanced MRI (DCE-MRI) and PET, with pharmacokinetic modeling, to characterize subchondral bone perfusion. Assessments are made of perfusion kinetics and vascular permeability by MRI, and blood volume and flow, and radionuclide incorporation into bone, by PET. These parameters are compared to cartilage lesion severity and bone histomorphometry. Assessments of intraosseous thrombi are made morphologically. Prolonged signal enhancement during the clearance phase of MRI correlated with OA severity and suggested venous stasis. Vascular permeability was not increased indicating that transvascular migration of contrast agent was not responsible for signal enhancement. Intraosseous thrombi were not observed. Decreased perfusion associated with severe OA was confirmed by PET and was associated with reduced radionuclide incorporation and osteoporosis. MRI and PET can be used to characterize kinetic parameters of circulation in OA and correlate them with subchondral bone metabolism of interest to the pathophysiology of OA. The significance of these observations may lie in alterations induced in the expression of cytokines by OA osteoblasts that are related to bone remodeling and cartilage breakdown.


Asunto(s)
Huesos/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Osteoartritis/fisiopatología , Tomografía de Emisión de Positrones/métodos , Animales , Volumen Sanguíneo , Permeabilidad Capilar , Medios de Contraste , Modelos Animales de Enfermedad , Cobayas , Aumento de la Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...