Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Genet ; 11: 562855, 2020.
Article En | MEDLINE | ID: mdl-33240316

Wandong (WD) cattle has recently been identified as a new Chinese native cattle breed by the National Commission for Livestock and Poultry Genetic Resources. The population size of this breed is less than 10,000. WD cattle and Dabieshan (DB) cattle are sympatric but are raised in different ecological environments, on mountains and plains, respectively, and the body sizes of these two breeds are markedly different. Blood samples were obtained from 8 adult female WD cattle and 7 adult female DB cattle (24 months old). The total RNA was extracted from leukocyte cells, and sequencing experiments were conducted on the Illumina HiSeqTM 4000 platform. After the removal of one outlier sample from the WD cattle breed as determined by principal component analysis (PCA), phylogenetic and population structure analyses indicated that WD and DB cattle formed a distinct Central China cattle group and showed evidence of hybridization between Bos. taurus and Bos. indicus. The immune-regulator CD48 (P = 1.3E-6) was associated with breed-specific traits according to loss-of-function variant enrichment analysis. In addition, 113 differentially expressed genes were identified between the two breeds, many of which are associated with the regulation of body growth, which is the major difference between the two breeds. This study showed that WD cattle belong to the group of hybrids between Bos. Taurus and Bos. indicus, and one novel gene associated with breed traits and multiple differentially expressed genes between these two closely related breeds was identified. The results provide insights into the genetic mechanisms that underlie economically important traits, such as body size, in cattle.

2.
Anim Reprod Sci ; 218: 106506, 2020 Jul.
Article En | MEDLINE | ID: mdl-32507252

Activity of transcription factors affect synthesis of G-protein coupled receptor 54 (GPR54), an important factor in regulation of initiation of puberty. Expression of the GPR54 gene in cattle is associated with polymorphisms in the proximal regulatory region (PRR) of the GPR54 gene. Transcription resulting in production of GPR54 mRNA transcript occurs as a result of transcription factor (TF) interactions in the PRR. Polymorphisms in the PRR may be associated with extent of activity of these TFs. Folliculogenesis-specific BHLH TF (FIGLA), neurogenin 2 (NEUROG2), and early growth response 1 (EGR1) are important in modulation of ovarian follicle development and neurons synthesizing GnRH, thus, regulating biosynthesis of luteinizing hormone. The aim of this study, therefore, was to assess the transcription-activating potential of binding sites for FIGLA, NEUROG2, and EGR1 TFs in the GPR54 promoter of cattle. Two luciferase-based promoters, ATC and CCT, which contain three single nucleotide polymorphisms (SNPs), A/C-794, T/C-663, and C/T-601, in the GPR54 PRR, were analyzed to evaluate gene expression and activation of different promoters by FIGLA, NEUROG2, and EGR1. The FIGLA induced GPR54 transcription through the CCT, whereas NEUROG2 and EGR1 induced GPR54 transcription through the ATC promoter-binding site. The CCT-activating effects of FIGLA were greater (2.56-fold) than the ATC-activating effects (P < 0.05). The ATC-activating effects of NEUROG2 and EGR1 were markedly greater (12.91- and 8.41-fold; P < 0.01) than CCT-activating effects. The polymorphisms, CCT and ATC, of the cattle GPR54 affect the activity of transcription factors, therefore, have an important effect on production of GPR54 mRNA transcript.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Cattle/physiology , Early Growth Response Protein 1/metabolism , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide , Receptors, Kisspeptin-1/metabolism , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Cattle/genetics , Early Growth Response Protein 1/genetics , Gene Expression Regulation , Nerve Tissue Proteins/genetics , Receptors, Kisspeptin-1/genetics , Regulatory Sequences, Nucleic Acid
3.
3 Biotech ; 10(6): 267, 2020 Jun.
Article En | MEDLINE | ID: mdl-32509500

Chinese and imported pig breeds differ in fat production potential, which is associated with the polymorphisms in the 5' proximal regulating region (5'PRR) of thyroid hormone responsive gene (THRSP). In three Chinese breeds (Dingyuan, CDY; Wannanhua, CWH; and Jixi, CJX) and one introduced breed (Yorkshire, YKS), three variant sites were located at T/C-400, A/G-376, and G/A-98 in the 5'PRR. Chinese pig breeds had higher C-400 allele frequencies than YKS. The frequencies of A-376 in CDY and G-376 in CWH were about 0.8. G-98 allele frequencies in CWH and YKS were 0.8617 and 0.8149, respectively. TGG was the dominant haplotype in YKS, CGG in CWH and CJX, and CAA in CDY. According to haplotype frequency, four breeds were clustered into three types, which was consistent with the geographical distribution of the breeds. In CDY, the average backfat thickness (BFT) was the highest with the CC-400 genotype, followed by CT-400 and TT-400 genotypes. In YKS, the pigs with CC-400 or CT-400 genotypes had higher BFT and average daily weight gain, whereas those with CC-400 or TT-400 genotypes had larger lion-eye area. No significant difference was observed in carcass traits among different genotypes at the A/G-376 and G/A-98 loci. The mRNA abundance of THRSP expression for the CCAGAG genotype was significantly higher than that for CTAGAG or TTAGAG genotype. These results indicated that the polymorphisms and genotype distribution of THRSP were closely related to the potential for fat production in pig breeds, which were the result of adaptation to artificial selection and natural selection.

...