Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
J Neurosci ; 44(21)2024 May 22.
Article En | MEDLINE | ID: mdl-38569926

Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain-containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onward and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate the activity of the Hippo pathway effector protein, yes-associated protein 1 (YAP1), in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; glutamate-aspartate transporter) and 2 (EAAT2; glutamate transporter-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced proinflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6-dependent ECM modifications.


Cell Adhesion Molecules , Extracellular Matrix , Hypoxia-Ischemia, Brain , YAP-Signaling Proteins , Animals , Female , Male , Cell Adhesion Molecules/metabolism , Mice , Extracellular Matrix/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , YAP-Signaling Proteins/metabolism , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Hyaluronic Acid/metabolism , Mice, Knockout , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
2.
Article En | MEDLINE | ID: mdl-37933270

Multiple sclerosis (MS) is a chronic demyelinating disease with prominent axon dysfunction. Our previous studies in an MS mouse model, experimental autoimmune encephalomyelitis (EAE), demonstrated that major histocompatibility complex Class II constructs can reverse clinical signs of EAE. These constructs block binding and downstream signaling of macrophage migration inhibitory factors (MIF-1/2) through CD74, thereby inhibiting phosphorylation of extracellular signal-regulated kinase (ERK) activation and tissue inflammation and promoting remyelination. To directly assess the effects of a novel third generation construct, DRhQ, on axon integrity in EAE, we compared axon conduction properties using electrophysiology on corpus callosum slices and optic nerves. By using two distinct white matter (WM) tracts, we aimed to assess the impact of the EAE and the benefit of DRhQ on myelinated and unmyelinated axons as well as to test the clinical value of DRhQ on demyelinating lesions in CC and optic myelitis. Our study found that EAE altered axon excitability, delayed axon conduction and slowed spatiotemporal summation correlated with diffuse astrocyte and microglia activation. Because MS predisposes patients to stroke, we also investigated and showed that vulnerability to WM ischemia is increased in the EAE MS mouse model. Treatment with DRhQ after the onset of EAE drastically inhibited microglial and astrocyte activation, improved functional integrity of the myelinated axons and enhanced recovery after ischemia. These results demonstrate that DRhQ administered after the onset of EAE promotes WM integrity and function, and reduces subsequent vulnerability to ischemic injury, suggesting important therapeutic potential for treatment of progressive MS.

3.
Front Mol Biosci ; 9: 908521, 2022.
Article En | MEDLINE | ID: mdl-35911974

The growth of the aging population, together with improved stroke care, has resulted in an increase in stroke survivors and a rise in recurrent events. Axonal injury and white matter (WM) dysfunction are responsible for much of the disability observed after stroke. The mechanisms of WM injury are distinct compared to gray matter and change with age. Therefore, an ideal stroke therapeutic must restore neuronal and axonal function when applied before or after a stroke, and it must also protect across age groups. Casein kinase 2 (CK2), is expressed in the brain, including WM, and is regulated during the development and numerous disease conditions such as cancer and ischemia. CK2 activation in WM mediates ischemic injury by activating the Cdk5 and AKT/GSK3ß signaling pathways. Consequently, CK2 inhibition using the small molecule inhibitor CX-4945 (Silmitasertib) correlates with preservation of oligodendrocytes, conservation of axon structure, and axonal mitochondria, leading to improved functional recovery. Remarkably, CK2 inhibition promotes WM function when applied after ischemic injury by specifically regulating the AKT/GSK3ß pathways. The blockade of the active conformation of AKT confers post-ischemic protection to young and old WM by preserving mitochondria, implying AKT as a common therapeutic target across age groups. Using a NanoString nCounter miRNA expression profiling, comparative analyses of ischemic WM with or without CX-4945 treatment reveal that miRNAs are expressed at high levels in WM after ischemia, and CX-4945 differentially regulates some of these miRNAs. Therefore, we propose that miRNA regulation may be one of the protective actions of CX-4945 against WM ischemic injury. Silmitasertib is FDA approved and currently in use for cancer and Covid patients; therefore, it is plausible to repurpose CK2 inhibitors for stroke patients.

4.
Exp Neurol ; 357: 114173, 2022 11.
Article En | MEDLINE | ID: mdl-35863500

The astrocyte-neuron lactate shuttle (ANLS) is an essential metabolic support system that uptakes glucose, stores it as glycogen in astrocytes, and provides glycogen-derived lactate for axonal function. Aging intrinsically increases the vulnerability of white matter (WM) to injury. Therefore, we investigated the regulation of this shuttle to understand vascular-glial metabolic coupling to support axonal function during aging in two different WM tracts. Aging astrocytes displayed larger cell bodies and thicker horizontal processes in contrast to thinner vertically oriented processes of young astrocytes. Aging axons recovered less following aglycemia in mouse optic nerves (MONs) compared to young axons, although providing lactate during aglycemia equally supported young and aging axonal function. Incubating MONs in high glucose to upregulate glycogen stores in astrocytes delayed loss of function during aglycemia and improved recovery in both young and aging axons. Providing lactate during recovery from aglycemia unmasked a metabolic switch from glucose to lactate in aging axons. Young and aging corpus callosum consisting of a mixture of myelinated and unmyelinated axons sustained their function fully when lactate was available during aglycemia and surprisingly showed a greater resilience to aglycemia compared to fully myelinated axons of optic nerve. We conclude that lactate is a universal substrate for axons independent of their myelination content and age.


Astrocytes , Lactic Acid , Aging/physiology , Animals , Astrocytes/metabolism , Axons/metabolism , Glucose/metabolism , Glycogen , Lactic Acid/metabolism , Mice , Neurons/metabolism
5.
ASN Neuro ; 13: 17590914211042220, 2021.
Article En | MEDLINE | ID: mdl-34619990

We have previously shown that two anti-cancer drugs, CX-4945 and MS-275, protect and preserve white matter (WM) architecture and improve functional recovery in a model of WM ischemic injury. While both compounds promote recovery, CX-4945 is a selective Casein kinase 2 (CK2) inhibitor and MS-275 is a selective Class I histone deacetylase (HDAC) inhibitor. Alterations in microRNAs (miRNAs) mediate some of the protective actions of these drugs. In this study, we aimed to (1) identify miRNAs expressed in mouse optic nerves (MONs); (2) determine which miRNAs are regulated by oxygen glucose deprivation (OGD); and (3) determine the effects of CX-4945 and MS-275 treatment on miRNA expression. RNA isolated from MONs from control and OGD-treated animals with and without CX-4945 or MS-275 treatment were quantified using NanoString nCounter® miRNA expression profiling. Comparative analysis of experimental groups revealed that 12 miRNAs were expressed at high levels in MONs. OGD upregulated five miRNAs (miR-1959, miR-501-3p, miR-146b, miR-201, and miR-335-3p) and downregulated two miRNAs (miR-1937a and miR-1937b) compared to controls. OGD with CX-4945 upregulated miR-1937a and miR-1937b, and downregulated miR-501-3p, miR-200a, miR-1959, and miR-654-3p compared to OGD alone. OGD with MS-275 upregulated miR-2134, miR-2141, miR-2133, miR-34b-5p, miR-153, miR-487b, miR-376b, and downregulated miR-717, miR-190, miR-27a, miR-1959, miR-200a, miR-501-3p, and miR-200c compared to OGD alone. Interestingly, miR-501-3p and miR-1959 were the only miRNAs upregulated by OGD, and downregulated by OGD plus CX-4945 and MS-275. Therefore, we suggest that protective functions of CX-4945 or MS-275 against WM injury maybe mediated, in part, through miRNA expression.


Antineoplastic Agents , MicroRNAs , White Matter , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Glucose , Mice , MicroRNAs/genetics
6.
Acta Neuropathol Commun ; 9(1): 34, 2021 03 01.
Article En | MEDLINE | ID: mdl-33648591

Cognitive dysfunction occurs in greater than 50% of individuals with multiple sclerosis (MS). Hippocampal demyelination is a prominent feature of postmortem MS brains and hippocampal atrophy correlates with cognitive decline in MS patients. Cellular and molecular mechanisms responsible for neuronal dysfunction in demyelinated hippocampi are not fully understood. Here we investigate a mouse model of hippocampal demyelination where twelve weeks of treatment with the oligodendrocyte toxin, cuprizone, demyelinates over 90% of the hippocampus and causes decreased memory/learning. Long-term potentiation (LTP) of hippocampal CA1 pyramidal neurons is considered to be a major cellular readout of learning and memory in the mammalian brain. In acute slices, we establish that hippocampal demyelination abolishes LTP and excitatory post-synaptic potentials of CA1 neurons, while pre-synaptic function of Schaeffer collateral fibers is preserved. Demyelination also reduced Ca2+-mediated firing of hippocampal neurons in vivo. Using three-dimensional electron microscopy, we investigated the number, shape (mushroom, stubby, thin), and post-synaptic densities (PSDs) of dendritic spines that facilitate LTP. Hippocampal demyelination did not alter the number of dendritic spines. Surprisingly, dendritic spines appeared to be more mature in demyelinated hippocampi, with a significant increase in mushroom-shaped spines, more perforated PSDs, and more astrocyte participation in the tripartite synapse. RNA sequencing experiments identified 400 altered transcripts in demyelinated hippocampi. Gene transcripts that regulate myelination, synaptic signaling, astrocyte function, and innate immunity were altered in demyelinated hippocampi. Hippocampal remyelination rescued synaptic transmission, LTP, and the majority of gene transcript changes. We establish that CA1 neurons projecting demyelinated axons silence their dendritic spines and hibernate in a state that may protect the demyelinated axon and facilitates functional recovery following remyelination.


Cognitive Dysfunction/physiopathology , Demyelinating Diseases/physiopathology , Dendritic Spines/ultrastructure , Hippocampus/pathology , Hippocampus/physiopathology , Multiple Sclerosis/physiopathology , Neurons/metabolism , Neurons/pathology , Animals , Astrocytes/metabolism , Cognitive Dysfunction/etiology , Cuprizone/administration & dosage , Cuprizone/toxicity , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Disease Models, Animal , Long-Term Potentiation , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Post-Synaptic Density/metabolism , Sequence Analysis, RNA
7.
Neurochem Res ; 46(10): 2696-2714, 2021 Oct.
Article En | MEDLINE | ID: mdl-33527218

This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.


Astrocytes/metabolism , Brain Diseases/metabolism , Mitochondria/metabolism , White Matter/metabolism , Animals , Humans , Neurons/metabolism
8.
Cond Med ; 4(3): 151-160, 2021 Jun.
Article En | MEDLINE | ID: mdl-36128004

Preconditioning is such a paradigm that a stimulus below the threshold of causing harm makes the brain stronger and resilient to subsequent injury. Preconditioning affords a vigorous tolerance to the brain against neurodegeneration. Numerous efforts have tried to identify the molecular targets involved in preconditioning-induced protective responses and interestingly many of those diverse mechanisms posit mitochondria as a master regulator of preconditioning. Therefore, in this review, we will critically discuss recent and emerging evidence for the involvement of mitochondria within the preconditioning paradigm. We will introduce the crucial targets and signaling cascades by which mitochondria exert preconditioning with a focus on white matter mitochondria and whether and how mechanisms for preconditioning differ in neurons and glial cells. In this aspect, we will evaluate the role of mitochondrial shaping proteins to establish structure-function interdependence for fusion-fission balance, motility, ATP production, Ca+2, and ROS scavenging. We will also discuss how aging impacts mitochondria and the consequences of mitochondrial aging on preconditioning mechanisms. We will concentrate on the regulation of mitochondrial DNA content and quantification specifically for its value as a biomarker to monitor disease conditions. The identification of these mitochondrial preconditioning mechanisms can be translated to potential pharmacological interventions to increase intrinsic resilience of the brain to injury and to develop novel approaches to neurodegenerative diseases. Moreover, mitochondria dynamics can be used as a memory or biomarker of preconditioning.

9.
Methods Mol Biol ; 2143: 169-177, 2020.
Article En | MEDLINE | ID: mdl-32524480

The use of ex vivo compound action potential (CAP) recordings from intact optic nerves is an ideal model to study white matter function without the influence of gray matter. Here, we describe how freshly dissected optic nerves are placed in a humidified recording chamber and how evoked CAPs are recorded and monitored in real time for up to 10 h. Evoked CAP recordings allow for white matter to be studied under acute challenges such as anoxia, hypoxia, aglycemia, and ischemia.


Optic Nerve/physiology , White Matter/physiology , Action Potentials/physiology , Animals , Computer Systems , Electrodes , Equipment Design , Mice , Neural Conduction , Optic Nerve/ultrastructure , Rats , Software , Species Specificity
10.
Adv Neurobiol ; 23: 347-361, 2019.
Article En | MEDLINE | ID: mdl-31667815

The astrocyte-neuron lactate transfer shuttle (ANLS) is one of the important metabolic systems that provides a physiological infrastructure for glia-neuronal interactions where specialized architectural organization supports the function. Perivascular astrocyte end-feet take up glucose via glucose transporter 1 to actively regulate glycogen stores, such that high ambient glucose upregulates glycogen and low levels of glucose deplete glycogen stores. A rapid breakdown of glycogen into lactate during increased neuronal activity or low glucose conditions becomes essential for maintaining axon function. However, it fails to benefit axon function during an ischemic episode in white matter (WM). Aging causes a remarkable change in astrocyte architecture characterized by thicker, larger processes oriented parallel to axons, as opposed to vertically-transposing processes. Subsequently, aging axons become more vulnerable to depleted glycogen, although aging axons can use lactate as efficiently as young axons. Lactate equally supports function during aglycemia in corpus callosum (CC), which consists of a mixture of myelinated and unmyelinated axons. Moreover, axon function in CC shows greater resilience to a lack of glucose compared to optic nerve, although both WM tracts show identical recovery after aglycemic injury. Interestingly, emerging evidence implies that a lactate transport system is not exclusive to astrocytes, as oligodendrocytes support the axons they myelinate, suggesting another metabolic coupling pathway in WM. Future studies are expected to unravel the details of oligodendrocyte-axon lactate metabolic coupling to establish that all WM components metabolically cooperate and that lactate may be the universal metabolite to sustain central nervous system function.


Aging/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain/cytology , Brain/metabolism , Cell Communication , Glycogen/metabolism , Lactic Acid/metabolism , Axons/metabolism , Brain/pathology , Glucose/metabolism , Oligodendroglia/metabolism
12.
Neuromolecular Med ; 21(4): 484-492, 2019 12.
Article En | MEDLINE | ID: mdl-31152363

Stroke significantly affects white matter in the brain by impairing axon function, which results in clinical deficits. Axonal mitochondria are highly dynamic and are transported via microtubules in the anterograde or retrograde direction, depending upon axonal energy demands. Recently, we reported that mitochondrial division inhibitor 1 (Mdivi-1) promotes axon function recovery by preventing mitochondrial fission only when applied during ischemia. Application of Mdivi-1 after injury failed to protect axon function. Interestingly, L-NIO, which is a NOS3 inhibitor, confers post-ischemic protection to axon function by attenuating mitochondrial fission and preserving mitochondrial motility via conserving levels of the microtubular adaptor protein Miro-2. We propose that preventing mitochondrial fission protects axon function during injury, but that restoration of mitochondrial motility is more important to promote axon function recovery after injury. Thus, Miro-2 may be a therapeutic molecular target for recovery following a stroke.


Axonal Transport , Axons/pathology , Ischemic Stroke/pathology , Mitochondria/ultrastructure , Mitochondrial Dynamics , Quinazolinones/therapeutic use , White Matter/pathology , Adenosine Triphosphate/biosynthesis , Aging/pathology , Animals , Axonal Transport/drug effects , Axons/drug effects , Axons/ultrastructure , Calcium/metabolism , Drug Evaluation, Preclinical , Humans , Hypoxia-Ischemia, Brain/pathology , Ischemic Stroke/drug therapy , Mice , Mitochondria/drug effects , Mitochondria/physiology , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/physiology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Ornithine/analogs & derivatives , Ornithine/pharmacology , Quinazolinones/pharmacology , Reperfusion Injury/pathology , White Matter/drug effects , White Matter/ultrastructure , rho GTP-Binding Proteins/physiology
14.
Front Cell Neurosci ; 13: 588, 2019.
Article En | MEDLINE | ID: mdl-32038176

Demyelination of axons in the central nervous system (CNS) is a hallmark of multiple sclerosis (MS) and other demyelinating diseases. Cycles of demyelination, followed by remyelination, appear in the majority of MS patients and are associated with the onset and quiescence of disease-related symptoms, respectively. Previous studies in human patients and animal models have shown that vast demyelination is accompanied by wide-scale changes to brain activity, but details of this process are poorly understood. We used electrophysiological recordings and non-linear fluorescence imaging from genetically encoded calcium indicators to monitor the activity of hippocampal neurons during demyelination and remyelination over a period of 100 days. We found that synaptic transmission in CA1 neurons was diminished in vitro, and that neuronal firing rates in CA1 and the dentate gyrus (DG) were substantially reduced during demyelination in vivo, which partially recovered after a short remyelination period. This new approach allows monitoring how changes in synaptic transmission induced by cuprizone diet affect neuronal activity, and it can potentially be used to study the effects of therapeutic interventions in protecting the functionality of CNS neurons.

15.
Neurobiol Dis ; 126: 47-61, 2019 06.
Article En | MEDLINE | ID: mdl-29944965

White matter (WM) is injured in most strokes, which contributes to functional deficits during recovery. Casein kinase 2 (CK2) is a protein kinase that is expressed in brain, including WM. To assess the impact of CK2 inhibition on axon recovery following oxygen glucose deprivation (OGD), mouse optic nerves (MONs), which are pure WM tracts, were subjected to OGD with or without the selective CK2 inhibitor CX-4945. CX-4945 application preserved axon function during OGD and promoted axon function recovery when applied before or after OGD. This protective effect of CK2 inhibition correlated with preservation of oligodendrocytes and conservation of axon structure and axonal mitochondria. To investigate the pertinent downstream signaling pathways, siRNA targeting the CK2α subunit identified CDK5 and AKT as downstream molecules. Consequently, MK-2206 and roscovitine, which are selective AKT and CDK5 inhibitors, respectively, protected young and aging WM function only when applied before OGD. However, a novel pan-AKT allosteric inhibitor, ARQ-092, which targets both the inactive and active conformations of AKT, conferred protection to young and aging axons when applied before or after OGD. These results suggest that AKT and CDK5 signaling contribute to the WM functional protection conferred by CK2 inhibition during ischemia, while inhibition of activated AKT signaling plays the primary role in post-ischemic protection conferred by CK2 inhibition in WM independent of age. CK2 inhibitors are currently being used in clinical trials for cancer patients; therefore, our results will provide rationale for repurposing these drugs as therapeutic options for stroke patients by adding novel targets.


Aging , Brain Ischemia/metabolism , Casein Kinase II/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Axons/metabolism , Axons/pathology , Brain Ischemia/pathology , Male , Mice , Mice, Inbred C57BL , Signal Transduction/physiology
16.
Neurosci Lett ; 687: 37-42, 2018 11 20.
Article En | MEDLINE | ID: mdl-30125643

Strokes occur predominantly in the elderly and white matter (WM) is injured in most strokes, contributing to the disability associated with clinical deficits. Casein kinase 2 (CK2) is expressed in neuronal cells and was reported to be neuroprotective during cerebral ischemia. Recently, we reported that CK2 is abundantly expressed by glial cells and myelin. However, in contrast to its role in cerebral (gray matter) ischemia, CK2 activation during ischemia mediated WM injury via the CDK5 and AKT/GSK3ß signaling pathways (Bastian et al., 2018). Subsequently, CK2 inhibition using the small molecule inhibitor CX-4945 correlated with preservation of oligodendrocytes as well as conservation of axon structure and axonal mitochondria, leading to improved functional recovery. Notably, CK2 inhibition promoted WM function when applied before or after ischemic injury by differentially regulating the CDK5 and AKT/GSK3ß pathways. Specifically, blockade of the active conformation of AKT conferred post-ischemic protection to young, aging, and old WM, suggesting a common therapeutic target across age groups. CK2 inhibitors are currently being used in clinical trials for cancer patients; therefore, it is important to consider the potential benefits of CK2 inhibitors during an ischemic attack.


Brain Ischemia/enzymology , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Naphthyridines/therapeutic use , Neuroprotective Agents/therapeutic use , White Matter/enzymology , Animals , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Humans , Naphthyridines/pharmacology , Neuroprotective Agents/pharmacology , Phenazines , White Matter/drug effects , White Matter/pathology
17.
Cond Med ; 1(2): 64-72, 2018.
Article En | MEDLINE | ID: mdl-30135960

Mechanisms of ischemic preconditioning have been extensively studied in gray matter. However, an ischemic episode affects both the gray matter (GM) and white matter (WM) portions of the brain. Inhibition of mitochondrial fission is one of the mechanisms of preconditioning neuronal cell bodies against ischemia. Although axons are anatomical extensions of neuronal cell bodies, injury mechanisms differ between GM and WM. Indeed, axonal dysfunction is responsible for much of the disability associated with clinical deficits observed after stroke; however, the signaling process underlying preconditioning remains unexplored in axons. Using mouse optic nerve, which is a pure isolated WM tract, we show that mitochondria in myelinated axons undergo rapid and profuse fission during oxygen glucose deprivation (OGD) that is mediated by translocation of cytoplasmic Dynamin Related Protein-1 (Drp-1) to mitochondria. OGD-induced mitochondrial fission correlates with reduced mitochondrial motility and loss of axon function. Mitochondrial fragmentation and loss of motility become permanent during the recovery period. Inhibiting mitochondrial fission by administering mitochondrial division inhibitor-1 (Mdivi-1) during OGD preserves mitochondrial shape and motility and promotes axon function recovery. In contrast, preconditioning WM by applying Mdivi-1 only before OGD fails to conserve mitochondrial shape or motility and fails to benefit axon function. Our findings suggest that inhibition of mitochondrial fission during ischemia promotes axon function recovery, but is not sufficient to precondition WM against ischemia. These results raise caution in that approaches to preconditioning neuronal cell bodies may not successfully translate into functional improvement following ischemia.

18.
J Neurosci ; 38(28): 6247-6266, 2018 07 11.
Article En | MEDLINE | ID: mdl-29891729

White matter (WM) damage following a stroke underlies a majority of the neurological disability that is subsequently observed. Although ischemic injury mechanisms are age-dependent, conserving axonal mitochondria provides consistent post-ischemic protection to young and aging WM. Nitric oxide synthase (NOS) activation is a major cause of oxidative and mitochondrial injury in gray matter during ischemia; therefore, we used a pure WM tract, isolated male mouse optic nerve, to investigate whether NOS inhibition provides post-ischemic functional recovery by preserving mitochondria. We show that pan-NOS inhibition applied before oxygen-glucose deprivation (OGD) promotes functional recovery of young and aging axons and preserves WM cellular architecture. This protection correlates with reduced nitric oxide (NO) generation, restored glutathione production, preserved axonal mitochondria and oligodendrocytes, and preserved ATP levels. Pan-NOS inhibition provided post-ischemic protection to only young axons, whereas selective inhibition of NOS3 conferred post-ischemic protection to both young and aging axons. Concurrently, genetic deletion of NOS3 conferred long-lasting protection to young axons against ischemia. OGD upregulated NOS3 levels in astrocytes, and we show for the first time that inhibition of NOS3 generation in glial cells prevents axonal mitochondrial fission and restores mitochondrial motility to confer protection to axons by preserving Miro-2 levels. Interestingly, NOS1 inhibition exerted post-ischemic protection selectively to aging axons, which feature age-dependent mechanisms of oxidative injury in WM. Our study provides the first evidence that inhibition of glial NOS activity confers long-lasting benefits to WM function and structure and suggests caution in defining the role of NO in cerebral ischemia at vascular and cellular levels.SIGNIFICANCE STATEMENT White matter (WM) injury during stroke is manifested as the subsequent neurological disability in surviving patients. Aging primarily impacts CNS WM and mechanisms of ischemic WM injury change with age. Nitric oxide is involved in various mitochondrial functions and we propose that inhibition of glia-specific nitric oxide synthase (NOS) isoforms promotes axon function recovery by preserving mitochondrial structure, function, integrity, and motility. Using electrophysiology and three-dimensional electron microscopy, we show that NOS3 inhibition provides a common target to improve young and aging axon function, whereas NOS1 inhibition selectively protects aging axons when applied after injury. This study provides the first evidence that inhibition of glial cell NOS activity confers long-lasting benefits to WM structure and function.


Aging/physiology , Brain Ischemia/physiopathology , Mitochondrial Dynamics/physiology , Mitochondrial Proteins/metabolism , Nitric Oxide Synthase Type III/antagonists & inhibitors , White Matter/injuries , rho GTP-Binding Proteins/metabolism , Animals , Brain Ischemia/metabolism , Male , Mice , Mice, Inbred C57BL , Recovery of Function/physiology , Stroke/metabolism , Stroke/physiopathology , White Matter/metabolism , White Matter/physiopathology
19.
Glia ; 65(5): 712-726, 2017 05.
Article En | MEDLINE | ID: mdl-28191691

BACE1 is an indispensable enzyme for generating ß-amyloid peptides, which are excessively accumulated in brains of Alzheimer's patients. However, BACE1 is also required for proper myelination of peripheral nerves, as BACE1-null mice display hypomyelination. To determine the precise effects of BACE1 on myelination, here we have uncovered a role of BACE1 in the control of Schwann cell proliferation during development. We demonstrate that BACE1 regulates the cleavage of Jagged-1 and Delta-1, two membrane-bound ligands of Notch. BACE1 deficiency induces elevated Jag-Notch signaling activity, which in turn facilitates proliferation of Schwann cells. This increase in proliferation leads to shortened internodes and decreased Schmidt-Lanterman incisures. Functionally, evoked compound action potentials in BACE1-null nerves were significantly smaller and slower, with a clear decrease in excitability. BACE1-null nerves failed to effectively use lactate as an alternative energy source under conditions of increased physiological activity. Correlatively, BACE1-null mice showed reduced performance on rotarod tests. Collectively, our data suggest that BACE1 deficiency enhances proliferation of Schwann cell due to the elevated Jag1/Delta1-Notch signaling, but fails to myelinate axons efficiently due to impaired the neuregulin1-ErbB signaling, which has been documented.


Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Cell Proliferation/physiology , Schwann Cells/metabolism , Amyloid Precursor Protein Secretases/genetics , Animals , Aspartic Acid Endopeptidases/genetics , Axons/metabolism , Cell Proliferation/genetics , Mice, Knockout , Myelin Sheath/metabolism , Neurogenesis/genetics , Neurogenesis/physiology , Schwann Cells/cytology , Sciatic Nerve/metabolism , Signal Transduction/physiology
20.
Neurochem Res ; 42(1): 19-34, 2017 Jan.
Article En | MEDLINE | ID: mdl-26915104

Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate can fuel ATP production, while ATP can act as a transmitter in intercellular signaling. We discuss the interface between glutamate and ATP in signaling and metabolism of astrocytes. Not only do glutamate and ATP cross each other's paths in physiology of the brain, but they also do so in its pathology. We present the fabric of this process in (patho)physiology through the discussion of synthesis and metabolism of ATP and glutamate in astrocytes as well as by providing a general description of astroglial receptors for these molecules along with the downstream signaling pathways that may be activated. It is astroglial receptors for these dual-acting molecules that could hold a key for medical intervention in pathological conditions. We focus on two examples disclosing the role of activation of astroglial ATP and glutamate receptors in pathology of two kinds of brain tissue, gray matter and white matter, respectively. Interventions at the interface of metabolism and signaling show promise for translational medicine.


Adenosine Triphosphate/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Glutamic Acid/metabolism , Receptors, Glutamate/metabolism , Signal Transduction/physiology , Animals , Humans , Receptors, Purinergic/metabolism
...