Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 102(3): 653-667.e6, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30879785

RESUMEN

SIM1-expressing paraventricular hypothalamus (PVH) neurons are key regulators of energy balance. Within the PVHSIM1 population, melanocortin-4 receptor-expressing (PVHMC4R) neurons are known to regulate satiety and bodyweight, yet they account for only half of PVHSIM1 neuron-mediated regulation. Here we report that PVH prodynorphin-expressing (PVHPDYN) neurons, which notably lack MC4Rs, function independently and additively with PVHMC4R neurons to account for the totality of PVHSIM1 neuron-mediated satiety. Moreover, PVHPDYN neurons are necessary for prevention of obesity in an independent but equipotent manner to PVHMC4R neurons. While PVHPDYN and PVHMC4R neurons both project to the parabrachial complex (PB), they synaptically engage distinct efferent nodes, the pre-locus coeruleus (pLC), and central lateral parabrachial nucleus (cLPBN), respectively. PB-projecting PVHPDYN neurons, like PVHMC4R neurons, receive input from interoceptive ARCAgRP neurons, respond to caloric state, and are sufficient and necessary to control food intake. This expands the CNS satiety circuitry to include two non-overlapping PVH to hindbrain circuits.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas/citología , Obesidad/fisiopatología , Núcleo Hipotalámico Paraventricular/citología , Respuesta de Saciedad/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Metabolismo Energético , Encefalinas/metabolismo , Locus Coeruleus/citología , Locus Coeruleus/metabolismo , Locus Coeruleus/fisiología , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/fisiología , Precursores de Proteínas/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Proteínas Represoras/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(43): 12298-12303, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791019

RESUMEN

Melanocortin-4 receptor (Mc4r)-expressing neurons in the autonomic nervous system, particularly in the paraventricular nucleus of the hypothalamus (PVH), play an essential role in blood pressure (BP) control. Mc4r-deficient (Mc4rKO) mice are severely obese but lack obesity-related hypertension; they also show a reduced pressor response to salt loading. We have previously reported that lean juvenile offspring born to diet-induced obese rats (OffOb) exhibit sympathetic-mediated hypertension, and we proposed a role for postnatally raised leptin in its etiology. Here, we test the hypothesis that neonatal hyperleptinemia due to maternal obesity induces persistent changes in the central melanocortin system, thereby contributing to offspring hypertension. Working on the OffOb paradigm in both sexes and using transgenic technology to restore Mc4r in the PVH of Mc4rKO (Mc4rPVH) mice, we have now shown that these mice develop higher BP than Mc4rKO or WT mice. We have also found that experimental hyperleptinemia induced in the neonatal period in Mc4rPVH and WT mice, but not in the Mc4rKO mice, leads to heightened BP and severe renal dysfunction. Thus, Mc4r in the PVH appears to be required for early-life programming of hypertension arising from either maternal obesity or neonatal hyperleptinemia. Early-life exposure of the PVH to maternal obesity through postnatal elevation of leptin may have long-term consequences for cardiovascular health.


Asunto(s)
Hipertensión/genética , Leptina/metabolismo , Obesidad/genética , Efectos Tardíos de la Exposición Prenatal/genética , Receptor de Melanocortina Tipo 4/genética , Animales , Presión Sanguínea/genética , Dieta/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertensión/complicaciones , Hipertensión/fisiopatología , Leptina/genética , Masculino , Relaciones Materno-Fetales/fisiología , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Obesidad/complicaciones , Obesidad/fisiopatología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/patología
3.
PLoS One ; 11(4): e0153187, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27077912

RESUMEN

Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as ß-endorphin, which has a key role in endogenous analgesia. The ß-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.


Asunto(s)
Analgesia , Bradicardia/metabolismo , Tronco Encefálico/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Insuficiencia Respiratoria/metabolismo , Analgésicos Opioides/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Channelrhodopsins , Femenino , Masculino , Hormonas Estimuladoras de los Melanocitos/farmacología , Ratones Transgénicos , Microscopía Confocal , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Neuronas/efectos de los fármacos , Núcleo Solitario/citología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo
4.
Mol Cell Neurosci ; 68: 258-71, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26292267

RESUMEN

The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1-3 gene products). There is a wealth of data on expression of Gal1-3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs).


Asunto(s)
Neuronas/fisiología , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , ARN Mensajero/metabolismo , Receptor de Galanina Tipo 1/genética , Receptor de Galanina Tipo 2/genética , Médula Espinal/metabolismo , Proteína Fluorescente Roja
5.
Obesity (Silver Spring) ; 22(10): 2252-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044758

RESUMEN

OBJECTIVE: Genome-wide association studies (GWAS) of BMI are mostly undertaken under the assumption that "kg/m(2) " is an index of weight fully adjusted for height, but in general this is not true. The aim here was to assess the contribution of common genetic variation to a adjusted version of that phenotype which appropriately accounts for covariation in height in children. METHODS: A GWAS of height-adjusted BMI (BMI[x] = weight/height(x) ), calculated to be uncorrelated with height, in 5809 participants (mean age 9.9 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC) was performed. RESULTS: GWAS based on BMI[x] yielded marked differences in genomewide results profile. SNPs in ADCY3 (adenylate cyclase 3) were associated at genome-wide significance level (rs11676272 (0.28 kg/m(3.1) change per allele G (0.19, 0.38), P = 6 × 10(-9) ). In contrast, they showed marginal evidence of association with conventional BMI [rs11676272 (0.25 kg/m(2) (0.15, 0.35), P = 6 × 10(-7) )]. Results were replicated in an independent sample, the Generation R study. CONCLUSIONS: Analysis of BMI[x] showed differences to that of conventional BMI. The association signal at ADCY3 appeared to be driven by a missense variant and it was strongly correlated with expression of this gene. Our work highlights the importance of well understood phenotype use (and the danger of convention) in characterising genetic contributions to complex traits.


Asunto(s)
Adenilil Ciclasas/genética , Estatura , Índice de Masa Corporal , Peso Corporal/genética , Polimorfismo de Nucleótido Simple , Adolescente , Alelos , Estatura/genética , Niño , Preescolar , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Masculino , Fenotipo
6.
Endocrinology ; 155(6): 2144-54, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24684305

RESUMEN

A wealth of animal and human studies demonstrate that early life environment significantly influences adult metabolic balance, however the etiology for offspring metabolic misprogramming remains incompletely understood. Here, we determine the effect of maternal diet per se on offspring sex-specific outcomes in metabolic health and hypothalamic transcriptome regulation in mice. Furthermore, to define developmental periods of maternal diet misprogramming aspects of offspring metabolic balance, we investigated offspring physiological and transcriptomic consequences of maternal high-fat/high-sugar diet feeding during pregnancy and/or lactation. We demonstrate that female offspring of high-fat/high-sugar diet-fed dams are particularly vulnerable to metabolic perturbation with body weight increases due to postnatal processes, whereas in utero effects of the diet ultimately lead to glucose homeostasis dysregulation. Furthermore, glucose- and maternal-diet sensitive gene expression modulation in the paraventricular hypothalamus is strikingly sexually dimorphic. In summary, we uncover female-specific, maternal diet-mediated in utero misprogramming of offspring glucose homeostasis and a striking sexual dimorphism in glucose- and maternal diet-sensitive paraventricular hypothalamus gene expression adjustment. Notably, female offspring metabolic vulnerability to maternal high-fat/high-sugar diet propagates a vicious cycle of obesity and type 2 diabetes in subsequent generations.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Glucosa/farmacología , Hipotálamo/metabolismo , Caracteres Sexuales , Adiposidad/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Hipotálamo/efectos de los fármacos , Insulina/sangre , Masculino , Ratones , Edulcorantes/farmacología
7.
Physiol Rep ; 2(3): e00240, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24760503

RESUMEN

Abstract Growth hormone secretagogue receptor (GHS-R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS-R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS-R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS-R deficient mice demonstrate that chronic absence of GHS-R signaling is protective against obesity-induced hypertension. GHS-R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high-fat diet (HFD)-feeding, increases in the sympathetic control of SBPV are suppressed in GHS-R KO mice. Our data further suggest that GHS-R signaling dampens the immediate HFD-mediated increase in spontaneous baroreflex sensitivity. In diet-induced obesity, absence of GHS-R signaling leads to reductions in obesity-mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS-R signaling may not result in adverse cardiovascular effects in obesity.

8.
Genes Cancer ; 4(3-4): 118-24, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24020003

RESUMEN

SIRT3 is a NAD(+)-dependent deacetylase that regulates the function of numerous mitochondrial proteins with roles in metabolism, oxidative stress, and cell survival. It is emerging as an instrumental regulator of the mitochondrial adaptive responses to stress, including metabolic reprogramming and enhancing antioxidant defense mechanisms. Here, we discuss the role that SIRT3 plays at both a cellular and physiological level and consider its involvement in disease. Mitochondrial dysfunction is a key contributing factor in many diseases; however, the mechanisms involved are often not well understood, and few targeted therapies exist. If manipulation of SIRT3 proves to be beneficial in disease states, then it could be a promising target for novel therapies.

9.
Cell ; 152(3): 612-9, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374353

RESUMEN

Melanocortin 4 receptors (MC4Rs) in the central nervous system are key regulators of energy and glucose homeostasis. Notably, obese patients with MC4R mutations are hyperinsulinemic and resistant to obesity-induced hypertension. Although these effects are probably dependent upon the activity of the autonomic nervous system, the cellular effects of MC4Rs on parasympathetic and sympathetic neurons remain undefined. Here, we show that MC4R agonists inhibit parasympathetic preganglionic neurons in the brainstem. In contrast, MC4R agonists activate sympathetic preganglionic neurons in the spinal cord. Deletion of MC4Rs in cholinergic neurons resulted in elevated levels of insulin. Furthermore, re-expression of MC4Rs specifically in cholinergic neurons (including sympathetic preganglionic neurons) restores obesity-associated hypertension in MC4R null mice. These findings provide a cellular correlate of the autonomic side effects associated with MC4R agonists and demonstrate a role for MC4Rs expressed in cholinergic neurons in the regulation of insulin levels and in the development of obesity-induced hypertension.


Asunto(s)
Tronco Encefálico/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Presión Sanguínea , Tronco Encefálico/citología , Neuronas Colinérgicas/metabolismo , AMP Cíclico/metabolismo , Fenómenos Electrofisiológicos , Humanos , Canales KATP/metabolismo , Masculino , Ratones , Obesidad/metabolismo , Obesidad/fisiopatología , Sistema Nervioso Parasimpático/metabolismo , Receptor de Melanocortina Tipo 4/genética , Médula Espinal/metabolismo , Sistema Nervioso Simpático/metabolismo
10.
PLoS One ; 7(11): e48225, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23139766

RESUMEN

Progressive mitochondrial dysfunction contributes to neuronal degeneration in age-mediated disease. An essential regulator of mitochondrial function is the deacetylase, sirtuin 3 (SIRT3). Here we investigate a role for CNS Sirt3 in mitochondrial responses to reactive oxygen species (ROS)- and Alzheimer's disease (AD)-mediated stress. Pharmacological augmentation of mitochondrial ROS increases Sirt3 expression in primary hippocampal culture with SIRT3 over-expression being neuroprotective. Furthermore, Sirt3 expression mirrors spatiotemporal deposition of ß-amyloid in an AD mouse model and is also upregulated in AD patient temporal neocortex. Thus, our data suggest a role for SIRT3 in mechanisms sensing and tackling ROS- and AD-mediated mitochondrial stress.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Especies Reactivas de Oxígeno/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Transporte de Electrón , Células HEK293 , Células HeLa , Humanos , Lentivirus , Ratones , Mitocondrias/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Sirtuina 3/genética , Sirtuina 3/metabolismo , Fracciones Subcelulares/metabolismo , Regulación hacia Arriba/genética
11.
PLoS One ; 6(4): e19155, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21544206

RESUMEN

The neurotransmitter glutamate is released by excitatory projection neurons throughout the brain. However, non-glutamatergic cells, including cholinergic and monoaminergic neurons, express markers that suggest that they are also capable of vesicular glutamate release. Striatal cholinergic interneurons (CINs) express the Type-3 vesicular glutamate transporter (VGluT3), although whether they form functional glutamatergic synapses is unclear. To examine this possibility, we utilized mice expressing Cre-recombinase under control of the endogenous choline acetyltransferase locus and conditionally expressed light-activated Channelrhodopsin2 in CINs. Optical stimulation evoked action potentials in CINs and produced postsynaptic responses in medium spiny neurons that were blocked by glutamate receptor antagonists. CIN-mediated glutamatergic responses exhibited a large contribution of NMDA-type glutamate receptors, distinguishing them from corticostriatal inputs. CIN-mediated glutamatergic responses were insensitive to antagonists of acetylcholine receptors and were not seen in mice lacking VGluT3. Our results indicate that CINs are capable of mediating fast glutamatergic transmission, suggesting a new role for these cells in regulating striatal activity.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Cuerpo Estriado/metabolismo , Interneuronas/metabolismo , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Channelrhodopsins , Cuerpo Estriado/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Femenino , Interneuronas/efectos de los fármacos , Masculino , Mecamilamina/farmacología , Ratones , Picrotoxina/farmacología , Receptores Colinérgicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Escopolamina/farmacología
12.
Cell Metab ; 13(2): 195-204, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21284986

RESUMEN

Melanocortin-4 receptor (MC4R) mutations cause dysregulation of energy balance and hyperinsulinemia. We have used mouse models to study the physiological roles of extrahypothalamic MC4Rs. Re-expression of MC4Rs in cholinergic neurons (ChAT-Cre, loxTB MC4R mice) modestly reduced body weight gain without altering food intake and was sufficient to normalize energy expenditure and attenuate hyperglycemia and hyperinsulinemia. In contrast, restoration of MC4R expression in brainstem neurons including those in the dorsal motor nucleus of the vagus (Phox2b-Cre, loxTB MC4R mice) was sufficient to attenuate hyperinsulinemia, while the hyperglycemia and energy balance were not normalized. Additionally, hepatic insulin action and insulin-mediated suppression of hepatic glucose production were improved in ChAT-Cre, loxTB MC4R mice. These findings suggest that MC4Rs expressed by cholinergic neurons regulate energy expenditure and hepatic glucose production. Our results also provide further evidence of the dissociation in pathways mediating the effects of melanocortins on energy balance and glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Neuronas/metabolismo , Receptor de Melanocortina Tipo 4/fisiología , Animales , Colina O-Acetiltransferasa/genética , Ingestión de Alimentos , Metabolismo Energético , Homeostasis , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo
13.
J Neurosci ; 30(44): 14630-4, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21048120

RESUMEN

D-Fenfluramine (D-Fen) increases serotonin (5-HT) content in the synaptic cleft and exerts anorexigenic effects in animals and humans. However, the neural circuits that mediate these effects are not fully identified. To address this issue, we assessed the efficacy of D-Fen-induced hypophagia in mouse models with manipulations of several genes in selective populations of neurons. Expectedly, we found that global deletion of 5-HT 2C receptors (5-HT(2C)Rs) significantly attenuated D-Fen-induced anorexia. These anorexigenic effects were restored in mice with 5-HT(2C)Rs expressed only in pro-opiomelanocortin (POMC) neurons. Further, we found that deletion of melanocortin 4 receptors (MC4Rs), a downstream target of POMC neurons, abolished anorexigenic effects of D-Fen. Reexpression of MC4Rs only in SIM1 neurons in the hypothalamic paraventricular nucleus and neurons in the amygdala was sufficient to restore the hypophagic property of D-Fen. Thus, our results identify a neurochemically defined neural circuit through which D-Fen influences appetite and thereby indicate that this 5-HT(2C)R/POMC-MC4R/SIM1 circuit may yield a more refined target to exploit for weight loss.


Asunto(s)
Anorexia/metabolismo , Anorexia/fisiopatología , Fenfluramina/farmacología , Melanocortinas/fisiología , Serotonina/fisiología , Animales , Anorexia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Proopiomelanocortina/fisiología , Receptor de Melanocortina Tipo 4/deficiencia , Receptor de Melanocortina Tipo 4/genética , Receptor de Serotonina 5-HT2C/deficiencia , Receptor de Serotonina 5-HT2C/genética , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Pérdida de Peso/genética , Pérdida de Peso/fisiología
14.
Endocrinology ; 150(11): 4874-82, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19819947

RESUMEN

Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal , Animales , Metabolismo Energético , Femenino , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proopiomelanocortina/genética
15.
EMBO Rep ; 10(10): 1175-81, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19713961

RESUMEN

Within the central nervous system (CNS), the hypothalamus senses and integrates information on the nutrient state of the body. However, the molecular mechanisms translating nutrient sensing into changes in gene expression and, ultimately, nutrient intake remain unclear. A crucial function for the cyclic AMP-response element binding protein (CREB) co-activator CREB-regulated transcription co-activator 2 (CRTC2) in maintaining glucose homeostasis has been shown in the liver. Here, we report CRTC2 expression in distinct areas of the CNS, including hypothalamic neurons. We show that hypothalamic CRTC2 phosphorylation and subcellular localization is altered by nutrient state. Specifically, glucose regulates hypothalamic CRTC2 activity via AMP-activated protein kinase (AMPK)-mediated phosphorylation of CRTC2. Hypothalamic AMPK controls the expression of the cAMP response element (CRE) gene, insulin receptor substrate 2 (Irs2), by regulating CRTC2 occupancy of the Irs2 promoter. Indeed, CRTC2 is required for the appropriate expression of specific hypothalamic CRE genes. Our data identify CRTC2 as a new hypothalamic AMPK target and highlight a role for CRTC2 in the mechanisms linking hypothalamic glucose sensing with CRE gene regulation.


Asunto(s)
Regulación de la Expresión Génica , Glucosa/metabolismo , Hipotálamo/metabolismo , Transactivadores/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones , Ratas , Técnicas de Cultivo de Tejidos , Factores de Transcripción
16.
Exp Physiol ; 94(8): 857-66, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19542189

RESUMEN

Obesity, due to its associated co-morbidities, including type 2 diabetes and cardiovascular disease, is at the forefront of today's health care concerns. Our need for novel, multifaceted approaches to tackle the global increase of waistlines is urgent, and understanding the physiological processes underlying our vulnerability to weight gain is an important one of them. Evidence for considerable heritability of body weight indicates genetic influences in the susceptibility to our obesogenic environment. Here, we will focus on neurons in brain structures such as the hypothalamus, which sense the body's metabolic state and, through an intricate cascade of events, elicit an appropriate response. We will explore the use of genetically modified mouse models in the investigation of physiological functions of genes and pathways in neuronal regulation of metabolic balance. Use of these techniques allows us to make manipulations at the molecular level (e.g. in the neuronal metabolic sensing mechanism) and combine this with systems-level physiological analysis (e.g. body weight). Recent technological advances also enable the investigation of the contributions of genes to the co-morbidities of obesity, such as obesity-induced hypertension. Reviewing examples of improvements as well as large gaps in our knowledge, this lecture aims to incite interest in whole body physiological research.


Asunto(s)
Metabolismo Energético/fisiología , Hambre , Hipotálamo/fisiología , Neuronas/fisiología , Obesidad/genética , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Metabolismo Energético/genética , Homeostasis/genética , Homeostasis/fisiología , Hipertensión/etiología , Ratones , Obesidad/complicaciones , Proopiomelanocortina/fisiología , Receptor de Melanocortina Tipo 4/fisiología
17.
J Clin Invest ; 118(5): 1796-805, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18382766

RESUMEN

Normal food intake and body weight homeostasis require the direct action of leptin on hypothalamic proopiomelanocortin (POMC) neurons. It has been proposed that leptin action requires PI3K activity. We therefore assessed the contribution of PI3K signaling to leptin's effects on POMC neurons and organismal energy balance. Leptin caused a rapid depolarization of POMC neurons and an increase in action potential frequency in patch-clamp recordings of hypothalamic slices. Pharmacologic inhibition of PI3K prevented this depolarization and increased POMC firing rate, indicating a PI3K-dependent mechanism of leptin action. Mice with genetically disrupted PI3K signaling in POMC cells failed to undergo POMC depolarization or increased firing frequency in response to leptin. Insulin's ability to hyperpolarize POMC neurons was also abolished in these mice. Moreover, targeted disruption of PI3K blunted the suppression of feeding elicited by central leptin administration. Despite these differences, mice with impaired PI3K signaling in POMC neurons exhibited normal long-term body weight regulation. Collectively, these results suggest that PI3K signaling in POMC neurons is essential for leptin-induced activation and insulin-induced inhibition of POMC cells and for the acute suppression of food intake elicited by leptin, but is not a major contributor to the regulation of long-term organismal energy homeostasis.


Asunto(s)
Hipotálamo/citología , Leptina/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal/fisiología , Animales , Peso Corporal , Ingestión de Alimentos , Metabolismo Energético , Homeostasis , Humanos , Ratones , Ratones Noqueados , Neuronas/citología , Técnicas de Placa-Clamp
18.
Endocrinology ; 149(4): 1773-85, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18162515

RESUMEN

Two known types of leptin-responsive neurons reside within the arcuate nucleus: the agouti gene-related peptide (AgRP)/neuropeptide Y (NPY) neuron and the proopiomelanocortin (POMC) neuron. By deleting the leptin receptor gene (Lepr) specifically in AgRP/NPY and/or POMC neurons of mice, we examined the several and combined contributions of these neurons to leptin action. Body weight and adiposity were increased by Lepr deletion from AgRP and POMC neurons individually, and simultaneous deletion in both neurons (A+P LEPR-KO mice) further increased these measures. Young (periweaning) A+P LEPR-KO mice exhibit hyperphagia and decreased energy expenditure, with increased weight gain, oxidative sparing of triglycerides, and increased fat accumulation. Interestingly, however, many of these abnormalities were attenuated in adult animals, and high doses of leptin partially suppress food intake in the A+P LEPR-KO mice. Although mildly hyperinsulinemic, the A+P LEPR-KO mice displayed normal glucose tolerance and fertility. Thus, AgRP/NPY and POMC neurons each play mandatory roles in aspects of leptin-regulated energy homeostasis, high leptin levels in adult mice mitigate the importance of leptin-responsiveness in these neurons for components of energy balance, suggesting the presence of other leptin-regulated pathways that partially compensate for the lack of leptin action on the POMC and AgRP/NPY neurons.


Asunto(s)
Proteína Relacionada con Agouti/fisiología , Ingestión de Alimentos , Metabolismo Energético , Proopiomelanocortina/fisiología , Receptores de Leptina/fisiología , Animales , Composición Corporal , Fertilidad , Hiperinsulinismo/etiología , Hiperfagia , Lactancia , Masculino , Ratones , Neuropéptido Y/fisiología
19.
Nature ; 449(7159): 228-32, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-17728716

RESUMEN

A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K(ATP) channels. Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production. UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Neuronas/metabolismo , Obesidad/fisiopatología , Proopiomelanocortina/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Humanos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/genética , Canales Iónicos/metabolismo , Glicósidos Iridoides , Iridoides/farmacología , Ratones , Ratones Obesos , Ratones Transgénicos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Obesidad/inducido químicamente , Obesidad/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Proteína Desacopladora 2
20.
Science ; 317(5834): 94-9, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17556551

RESUMEN

Forming distinct representations of multiple contexts, places, and episodes is a crucial function of the hippocampus. The dentate gyrus subregion has been suggested to fulfill this role. We have tested this hypothesis by generating and analyzing a mouse strain that lacks the gene encoding the essential subunit of the N-methyl-d-aspartate (NMDA) receptor NR1, specifically in dentate gyrus granule cells. The mutant mice performed normally in contextual fear conditioning, but were impaired in the ability to distinguish two similar contexts. A significant reduction in the context-specific modulation of firing rate was observed in the CA3 pyramidal cells when the mutant mice were transferred from one context to another. These results provide evidence that NMDA receptors in the granule cells of the dentate gyrus play a crucial role in the process of pattern separation.


Asunto(s)
Giro Dentado/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Plasticidad Neuronal , Patrones de Reconocimiento Fisiológico , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Conducta Animal , Condicionamiento Psicológico , Señales (Psicología) , Giro Dentado/citología , Discriminación en Psicología , Potenciales Postsinápticos Excitadores , Miedo , Hipocampo/citología , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Vía Perforante , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/genética , Recombinación Genética , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA