Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Cell Stem Cell ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38754429

Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.

2.
Nat Biotechnol ; 41(12): 1801-1809, 2023 Dec.
Article En | MEDLINE | ID: mdl-36973556

Transcription factor binding across the genome is regulated by DNA sequence and chromatin features. However, it is not yet possible to quantify the impact of chromatin context on transcription factor binding affinities. Here, we report a method called binding affinities to native chromatin by sequencing (BANC-seq) to determine absolute apparent binding affinities of transcription factors to native DNA across the genome. In BANC-seq, a concentration range of a tagged transcription factor is added to isolated nuclei. Concentration-dependent binding is then measured per sample to quantify apparent binding affinities across the genome. BANC-seq adds a quantitative dimension to transcription factor biology, which enables stratification of genomic targets based on transcription factor concentration and prediction of transcription factor binding sites under non-physiological conditions, such as disease-associated overexpression of (onco)genes. Notably, whereas consensus DNA binding motifs for transcription factors are important to establish high-affinity binding sites, these motifs are not always strictly required to generate nanomolar-affinity interactions in the genome.


Chromatin , Transcription Factors , Chromatin/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Binding , DNA/genetics , DNA/metabolism , Gene Expression Regulation , Binding Sites/genetics , Sequence Analysis, DNA
3.
Microbiol Spectr ; : e0023123, 2023 Feb 13.
Article En | MEDLINE | ID: mdl-36779734

During the coronavirus disease 2019 (COVID-19) pandemic, large differences in susceptibility and mortality due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported between populations in Europe and South Asia. While both host and environmental factors (including Mycobacterium bovis BCG vaccination) have been proposed to explain this, the potential biological substrate of these differences is unknown. We purified peripheral blood mononuclear cells from individuals living in India and the Netherlands at baseline and 10 to 12 weeks after BCG vaccination. We compared chromatin accessibility between the two populations at baseline, as well as gene transcription profiles and cytokine production capacities upon stimulation. The chromatin accessibility of genes important for adaptive immunity was higher in the Indians than in the Europeans, while the latter had more accessible chromatin regions in genes of the innate immune system. At the transcriptional level, we observed that the Indian volunteers displayed a more tolerant immune response to stimulation, in contrast to a more exaggerated response in the Europeans. BCG vaccination strengthened the tolerance program in the Indians but not in the Europeans. These differences may partly explain the different impact of COVID-19 on the two populations. IMPORTANCE In this study, we assessed the differences in immune responses in individuals from India and Europe. This aspect is of great relevance, because of the described differences in morbidity and mortality between India and Europe during the pandemic. We found a significant difference in chromatin accessibility in immune cells from the two populations, followed by a more balanced and effective response in individuals from India. These exciting findings represent a very important piece of the puzzle for understanding the COVID-19 pandemic at a global level.

4.
Science ; 377(6614): 1533-1537, 2022 09 30.
Article En | MEDLINE | ID: mdl-36173861

Protein synthesis generally starts with a methionine that is removed during translation. However, cytoplasmic actin defies this rule because its synthesis involves noncanonical excision of the acetylated methionine by an unidentified enzyme after translation. Here, we identified C19orf54, named ACTMAP (actin maturation protease), as this enzyme. Its ablation resulted in viable mice in which the cytoskeleton was composed of immature actin molecules across all tissues. However, in skeletal muscle, the lengths of sarcomeric actin filaments were shorter, muscle function was decreased, and centralized nuclei, a common hallmark of myopathies, progressively accumulated. Thus, ACTMAP encodes the missing factor required for the synthesis of mature actin and regulates specific actin-dependent traits in vivo.


Actins , Methionine , Peptide Hydrolases , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Actins/biosynthesis , Actins/genetics , Animals , Endopeptidases , Methionine/genetics , Methionine/metabolism , Mice , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism
5.
Blood Adv ; 6(7): 2254-2266, 2022 04 12.
Article En | MEDLINE | ID: mdl-35086136

Diffuse large B-cell lymphoma (DLBCL) represents the most common form of non-Hodgkin lymphoma (NHL) that is still incurable in a large fraction of patients. Tetraspanin CD37 is highly expressed on mature B lymphocytes, and multiple CD37-targeting therapies are under clinical development for NHL. However, CD37 expression is nondetectable in ∼50% of DLBCL patients, which correlates with inferior treatment outcome, but the underlying mechanisms for differential CD37 expression in DLBCL are still unknown. Here, we investigated the regulation of the CD37 gene in human DLBCL at the (epi-)genetic and transcriptional level. No differences were observed in DNA methylation within the CD37 promoter region between CD37-positive and CD37-negative primary DLBCL patient samples. On the contrary, CD37-negative DLBCL cells specifically lacked CD37 promoter activity, suggesting differential regulation of CD37 gene expression. Using an unbiased quantitative proteomic approach, we identified transcription factor IRF8 to be significantly higher expressed in nuclear extracts of CD37-positive as compared with CD37-negative DLBCL. Direct binding of IRF8 to the CD37 promoter region was confirmed by DNA pulldown assay combined with mass spectrometry and targeted chromatin immunoprecipitation (ChIP). Functional analysis indicated that IRF8 overexpression enhanced CD37 protein expression, while CRISPR/Cas9 knockout of IRF8 decreased CD37 levels in DLBCL cell lines. Immunohistochemical analysis in a large cohort of primary DLBCL (n = 206) revealed a significant correlation of IRF8 expression with detectable CD37 levels. Together, this study provides new insight into the molecular mechanisms underlying differential CD37 expression in human DLBCL and reveals IRF8 as a transcriptional regulator of CD37 in B-cell lymphoma.


Interferon Regulatory Factors/metabolism , Lymphoma, Large B-Cell, Diffuse , Proteomics , Antigens, Neoplasm/genetics , B-Lymphocytes/metabolism , Humans , Interferon Regulatory Factors/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Tetraspanins/genetics
6.
Hum Mol Genet ; 31(6): 863-874, 2022 03 21.
Article En | MEDLINE | ID: mdl-34605909

The 10q24.33 locus is known to be associated with susceptibility to cutaneous malignant melanoma (CMM), but the mechanisms underlying this association have been not extensively investigated. We carried out an integrative genomic analysis of 10q24.33 using epigenomic annotations and in vitro reporter gene assays to identify regulatory variants. We found two putative functional single nucleotide polymorphisms (SNPs) in an enhancer and in the promoter of OBFC1, respectively, in neural crest and CMM cells, one, rs2995264, altering enhancer activity. The minor allele G of rs2995264 correlated with lower OBFC1 expression in 470 CMM tumors and was confirmed to increase the CMM risk in a cohort of 484 CMM cases and 1801 controls of Italian origin. Hi-C and chromosome conformation capture (3C) experiments showed the interaction between the enhancer-SNP region and the promoter of OBFC1 and an isogenic model characterized by CRISPR-Cas9 deletion of the enhancer-SNP region confirmed the potential regulatory effect of rs2995264 on OBFC1 transcription. Moreover, the presence of G-rs2995264 risk allele reduced the binding affinity of the transcription factor MEOX2. Biologic investigations showed significant cell viability upon depletion of OBFC1, specifically in CMM cells that were homozygous for the protective allele. Clinically, high levels of OBFC1 expression associated with histologically favorable CMM tumors. Finally, preliminary results suggested the potential effect of decreased OBFC1 expression on telomerase activity in tumorigenic conditions. Our results support the hypothesis that reduced expression of OBFC1 gene through functional heritable DNA variation can contribute to malignant transformation of normal melanocytes.


Melanoma , Skin Neoplasms , Genetic Predisposition to Disease , Humans , Melanoma/pathology , Polymorphism, Single Nucleotide/genetics , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
7.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166259, 2021 12 01.
Article En | MEDLINE | ID: mdl-34450246

A genomic locus 8 kb downstream of the transcription factor GFI1B (Growth Factor Independence 1B) predisposes to clonal hematopoiesis and myeloproliferative neoplasms. One of the most significantly associated polymorphisms in this region is rs621940-G. GFI1B auto-represses GFI1B, and altered GFI1B expression contributes to myeloid neoplasms. We studied whether rs621940-G affects GFI1B expression and growth of immature cells. GFI1B ChIP-seq showed clear binding to the rs621940 locus. Preferential binding of various hematopoietic transcription factors to either the rs621940-C or -G allele was observed, but GFI1B showed no preference. In gene reporter assays the rs621940 region inhibited GFI1B promoter activity with the G-allele having less suppressive effects compared to the C-allele. However, CRISPR-Cas9 mediated deletion of the locus in K562 cells did not alter GFI1B expression nor auto-repression. In healthy peripheral blood mononuclear cells GFI1B expression did not differ consistently between the rs621940 alleles. Long range and targeted deep sequencing did not detect consistent effects of rs621940-G on allelic GFI1B expression either. Finally, we observed that myeloid colony formation was not significantly affected by either rs621940 allele in 193 healthy donors. Together, these findings show no evidence that rs621940 or its locus affect GFI1B expression, auto-repression or growth of immature myeloid cells.


Genetic Predisposition to Disease , Myeloproliferative Disorders/genetics , Neoplasms/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Adult , Aged , Alleles , CRISPR-Cas Systems/genetics , Female , Gene Expression Regulation/genetics , Genome, Human/genetics , Genotype , High-Throughput Nucleotide Sequencing , Humans , K562 Cells , Male , Middle Aged , Myeloid Cells/metabolism , Myeloid Cells/pathology , Myeloproliferative Disorders/pathology , Neoplasms/pathology , Phagocytosis/genetics , Polymorphism, Single Nucleotide/genetics , Young Adult
8.
EMBO J ; 40(14): e106536, 2021 07 15.
Article En | MEDLINE | ID: mdl-34009673

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.


Chromosomal Instability/genetics , Chromosomes/genetics , Mutation/genetics , Spliceosomes/genetics , Amino Acid Sequence , Cell Cycle/genetics , Cell Line , Cell Line, Tumor , HeLa Cells , Humans , Introns/genetics
9.
FEBS J ; 288(10): 3231-3245, 2021 05.
Article En | MEDLINE | ID: mdl-33283408

The multi-subunit nucleosome remodeling and deacetylase (NuRD) complex consists of seven subunits, each of which comprises two or three paralogs in vertebrates. These paralogs define mutually exclusive and functionally distinct complexes. In addition, several proteins in the complex are multimeric, which complicates structural studies. Attempts to purify sufficient amounts of endogenous complex or recombinantly reconstitute the complex for structural studies have proven quite challenging. Until now, only substructures of individual domains or proteins and low-resolution densities of (partial) complexes have been reported. In this study, we comprehensively investigated the relative orientation of different subunits within the NuRD complex using multiple cross-link IP mass spectrometry (xIP-MS) experiments. Our results confirm that the core of the complex is formed by MTA, RBBP, and HDAC proteins. Assembly of a copy of MBD and GATAD2 onto this core enables binding of the peripheral CHD and CDK2AP proteins. Furthermore, our experiments reveal that not only CDK2AP1 but also CDK2AP2 interacts with the NuRD complex. This interaction requires the C terminus of CHD proteins. Our data provide a more detailed understanding of the topology of the peripheral NuRD subunits relative to the core complex. DATABASE: Proteomics data are available in the PRIDE database under the accession numbers PXD017244 and PXD017378.


Cyclin-Dependent Kinases/chemistry , GATA Transcription Factors/chemistry , Histone Deacetylases/chemistry , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Nucleosomes/ultrastructure , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Cross-Linking Reagents/chemistry , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , HeLa Cells , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Mass Spectrometry/methods , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Models, Molecular , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
10.
Eur J Immunol ; 51(2): 471-482, 2021 02.
Article En | MEDLINE | ID: mdl-33065764

RasGRP1 is a Ras guanine nucleotide exchange factor, and an essential regulator of lymphocyte receptor signaling. In mice, Rasgrp1 deletion results in defective T lymphocyte development. RASGRP1-deficient patients suffer from immune deficiency, and the RASGRP1 gene has been linked to autoimmunity. However, how RasGRP1 levels are regulated, and if RasGRP1 dosage alterations contribute to autoimmunity remains unknown. We demonstrate that diminished Rasgrp1 expression caused defective T lymphocyte selection in C57BL/6 mice, and that the severity of inflammatory disease inversely correlates with Rasgrp1 expression levels. In patients with autoimmunity, active inflammation correlated with decreased RASGRP1 levels in CD4+ T cells. By analyzing H3K27 acetylation profiles in human T cells, we identified a RASGRP1 enhancer that harbors autoimmunity-associated SNPs. CRISPR-Cas9 disruption of this enhancer caused lower RasGRP1 expression, and decreased binding of RUNX1 and CBFB transcription factors. Analyzing patients with autoimmunity, we detected reduced RUNX1 expression in CD4+ T cells. Lastly, we mechanistically link RUNX1 to transcriptional regulation of RASGRP1 to reveal a key circuit regulating RasGRP1 expression, which is vital to prevent inflammatory disease.


Autoimmunity/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Transcription, Genetic/genetics , Animals , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Core Binding Factor Alpha 2 Subunit/immunology , DNA-Binding Proteins/immunology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Guanine Nucleotide Exchange Factors/immunology , Histones/genetics , Histones/immunology , Humans , Inflammation/genetics , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription, Genetic/immunology
11.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Article En | MEDLINE | ID: mdl-32217665

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/enzymology , Mutation , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Biosynthesis/genetics , RNA, Ribosomal, 18S/metabolism
12.
Nucleic Acids Res ; 48(2): 830-846, 2020 01 24.
Article En | MEDLINE | ID: mdl-31799605

RNA methylations are essential both for RNA structure and function, and are introduced by a number of distinct methyltransferases (MTases). In recent years, N6-methyladenosine (m6A) modification of eukaryotic mRNA has been subject to intense studies, and it has been demonstrated that m6A is a reversible modification that regulates several aspects of mRNA function. However, m6A is also found in other RNAs, such as mammalian 18S and 28S ribosomal RNAs (rRNAs), but the responsible MTases have remained elusive. 28S rRNA carries a single m6A modification, found at position A4220 (alternatively referred to as A4190) within a stem-loop structure, and here we show that the MTase ZCCHC4 is the enzyme responsible for introducing this modification. Accordingly, we found that ZCCHC4 localises to nucleoli, the site of ribosome assembly, and that proteins involved in RNA metabolism are overrepresented in the ZCCHC4 interactome. Interestingly, the absence of m6A4220 perturbs codon-specific translation dynamics and shifts gene expression at the translational level. In summary, we establish ZCCHC4 as the enzyme responsible for m6A modification of human 28S rRNA, and demonstrate its functional significance in mRNA translation.


Adenosine/analogs & derivatives , Methyltransferases/genetics , RNA, Messenger/genetics , RNA, Ribosomal, 28S/genetics , Adenosine/chemistry , Adenosine/genetics , Catalysis , Humans , Methylation , Methyltransferases/chemistry , Protein Binding/genetics , RNA, Ribosomal, 28S/chemistry
13.
Mol Cell ; 76(3): 437-452.e6, 2019 11 07.
Article En | MEDLINE | ID: mdl-31521505

Polycomb repressive complex 2 (PRC2) is composed of EED, SUZ12, and EZH1/2 and mediates mono-, di-, and trimethylation of histone H3 at lysine 27. At least two independent subcomplexes exist, defined by their specific accessory proteins: PRC2.1 (PCL1-3, EPOP, and PALI1/2) and PRC2.2 (AEBP2 and JARID2). We show that PRC2.1 and PRC2.2 share the majority of target genes in mouse embryonic stem cells. The loss of PCL1-3 is sufficient to evict PRC2.1 from Polycomb target genes but only leads to a partial reduction of PRC2.2 and H3K27me3. Conversely, disruption of PRC2.2 function through the loss of either JARID2 or RING1A/B is insufficient to completely disrupt targeting of SUZ12 by PCLs. Instead, the combined loss of both PRC2.1 and PRC2.2 is required, leading to the global mislocalization of SUZ12. This supports a model in which the specific accessory proteins within PRC2.1 and PRC2.2 cooperate to direct H3K27me3 via both synergistic and independent mechanisms.


Chromatin/metabolism , Histones/metabolism , Mouse Embryonic Stem Cells/metabolism , Polycomb Repressive Complex 2/metabolism , Protein Processing, Post-Translational , Animals , Binding Sites , Cell Line, Tumor , Chromatin/genetics , Humans , Methylation , Mice , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/genetics , Protein Binding , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Nat Genet ; 51(7): 1160-1169, 2019 07.
Article En | MEDLINE | ID: mdl-31253979

Most of the millions of SNPs in the human genome are non-coding, and many overlap with putative regulatory elements. Genome-wide association studies (GWAS) have linked many of these SNPs to human traits or to gene expression levels, but rarely with sufficient resolution to identify the causal SNPs. Functional screens based on reporter assays have previously been of insufficient throughput to test the vast space of SNPs for possible effects on regulatory element activity. Here we leveraged the throughput and resolution of the survey of regulatory elements (SuRE) reporter technology to survey the effect of 5.9 million SNPs, including 57% of the known common SNPs, on enhancer and promoter activity. We identified more than 30,000 SNPs that alter the activity of putative regulatory elements, partially in a cell-type-specific manner. Integration of this dataset with GWAS results may help to pinpoint SNPs that underlie human traits.


Genetic Predisposition to Disease , Genome, Human , Polymorphism, Single Nucleotide , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Genome-Wide Association Study , Hep G2 Cells , High-Throughput Nucleotide Sequencing , Humans , K562 Cells , Phenotype , Quantitative Trait Loci , Transcription Factors/genetics
15.
Sci Rep ; 9(1): 6584, 2019 04 29.
Article En | MEDLINE | ID: mdl-31036863

Human methytransferase like proteins (METTL) are part of a large protein family characterized by the presence of binding domains for S-adenosyl methionine, a co-substrate for methylation reactions. Despite the fact that members of this protein family were shown or predicted to be DNA, RNA or protein methyltransferases, most METTL proteins are still poorly characterized. Identification of complexes in which these potential enzymes act could help to understand their function(s) and substrate specificities. Here we systematically studied interacting partners of METTL protein family members in HeLa cells using label-free quantitative mass spectrometry. We found that, surprisingly, many of the METTL proteins appear to function outside of stable complexes whereas others including METTL7B, METTL8 and METTL9 have high-confidence interaction partners. Our study is the first systematic and comprehensive overview of the interactome of METTL protein family that can provide a crucial resource for further studies of these potential novel methyltransferases.


Amino Acid Sequence/genetics , Methyltransferases/genetics , Multigene Family/genetics , Binding Sites/genetics , HeLa Cells , Humans , Methylation , Methyltransferases/chemistry , Methyltransferases/classification , Protein Binding/genetics , S-Adenosylmethionine/metabolism , Substrate Specificity
16.
Haematologica ; 104(7): 1460-1472, 2019 07.
Article En | MEDLINE | ID: mdl-30655368

Dominant-negative mutations in the transcription factor Growth Factor Independence-1B (GFI1B), such as GFI1BQ287*, cause a bleeding disorder characterized by a plethora of megakaryocyte and platelet abnormalities. The deregulated molecular mechanisms and pathways are unknown. Here we show that both normal and Q287* mutant GFI1B interacted most strongly with the lysine specific demethylase-1 - REST corepressor - histone deacetylase (LSD1-RCOR-HDAC) complex in megakaryoblasts. Sequestration of this complex by GFI1BQ287* and chemical separation of GFI1B from LSD1 induced abnormalities in normal megakaryocytes comparable to those seen in patients. Megakaryocytes derived from GFI1BQ287*-induced pluripotent stem cells also phenocopied abnormalities seen in patients. Proteome studies on normal and mutant-induced pluripotent stem cell-derived megakaryocytes identified a multitude of deregulated pathways downstream of GFI1BQ287* including cell division and interferon signaling. Proteome studies on platelets from GFI1BQ287* patients showed reduced expression of proteins implicated in platelet function, and elevated expression of proteins normally downregulated during megakaryocyte differentiation. Thus, GFI1B and LSD1 regulate a broad developmental program during megakaryopoiesis, and GFI1BQ287* deregulates this program through LSD1-RCOR-HDAC sequestering.


Blood Coagulation Disorders/pathology , Blood Platelets/pathology , Gene Expression Regulation , Induced Pluripotent Stem Cells/pathology , Megakaryocytes/pathology , Mutation , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/metabolism , Blood Platelets/metabolism , Cell Differentiation , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Megakaryocytes/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , Protein Interaction Maps , Proteome/analysis , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism
17.
Elife ; 72018 11 15.
Article En | MEDLINE | ID: mdl-30431433

Synovial sarcoma tumours contain a characteristic fusion protein, SS18-SSX, which drives disease development. Targeting oncogenic fusion proteins presents an attractive therapeutic opportunity. However, SS18-SSX has proven intractable for therapeutic intervention. Using a domain-focused CRISPR screen we identified the bromodomain of BRD9 as a critical functional dependency in synovial sarcoma. BRD9 is a component of SS18-SSX containing BAF complexes in synovial sarcoma cells; and integration of BRD9 into these complexes is critical for cell growth. Moreover BRD9 and SS18-SSX co-localize extensively on the synovial sarcoma genome. Remarkably, synovial sarcoma cells are highly sensitive to a novel small molecule degrader of BRD9, while other sarcoma subtypes are unaffected. Degradation of BRD9 induces downregulation of oncogenic transcriptional programs and inhibits tumour progression in vivo. We demonstrate that BRD9 supports oncogenic mechanisms underlying the SS18-SSX fusion in synovial sarcoma and highlight targeted degradation of BRD9 as a potential therapeutic opportunity in this disease.


Gene Expression Regulation, Neoplastic , Proteolysis , Sarcoma, Synovial/genetics , Transcription Factors/metabolism , Disease Progression , HEK293 Cells , Humans , Protein Binding , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sarcoma, Synovial/pathology , Transcription Factors/chemistry , Transcription, Genetic
18.
Nat Commun ; 9(1): 4588, 2018 11 02.
Article En | MEDLINE | ID: mdl-30389936

The nucleosome remodeling and deacetylase (NuRD) complex plays an important role in gene expression regulation, stem cell self-renewal, and lineage commitment. However, little is known about the dynamics of NuRD during cellular differentiation. Here, we study these dynamics using genome-wide profiling and quantitative interaction proteomics in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We find that the genomic targets of NuRD are highly dynamic during differentiation, with most binding occurring at cell-type specific promoters and enhancers. We identify ZFP296 as an ESC-specific NuRD interactor that also interacts with the SIN3A complex. ChIP-sequencing in Zfp296 knockout (KO) ESCs reveals decreased NuRD binding both genome-wide and at ZFP296 binding sites, although this has little effect on the transcriptome. Nevertheless, Zfp296 KO ESCs exhibit delayed induction of lineage-specific markers upon differentiation to embryoid bodies. In summary, we identify an ESC-specific NuRD-interacting protein which regulates genome-wide NuRD binding and cellular differentiation.


Cell Differentiation , DNA-Binding Proteins/metabolism , Genome , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Animals , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Mice , Mice, Knockout , Promoter Regions, Genetic/genetics , Protein Binding , Protein Transport , Repressor Proteins/metabolism , Sin3 Histone Deacetylase and Corepressor Complex
20.
Gigascience ; 6(10): 1-10, 2017 10 01.
Article En | MEDLINE | ID: mdl-29020746

Experience-dependent plasticity (EDP) powerfully shapes neural circuits by inducing long-lasting molecular changes in the brain. Molecular mechanisms of EDP have been traditionally studied by identifying single or small subsets of targets along the biochemical pathways that link synaptic receptors to nuclear processes. Recent technological advances in large-scale analysis of gene transcription and translation now allow systematic observation of thousands of molecules simultaneously. Here we employed label-free quantitative mass spectrometry to address experience-dependent changes in the proteome after sensory deprivation of the primary somatosensory cortex. Cortical column- and layer-specific tissue samples were collected from control animals, with all whiskers intact, and animals whose C-row whiskers were bilaterally plucked for 11-14 days. Thirty-three samples from cortical layers (L) 2/3 and L4 spanning across control, deprived, and first- and second-order spared columns yielded at least 10 000 peptides mapping to ∼5000 protein groups. Of these, 4676 were identified with high confidence, and >3000 were found in all samples. This comprehensive database provides a snapshot of the proteome after whisker deprivation, a protocol that has been widely used to unravel the synaptic, cellular, and network mechanisms of EDP. Complementing the recently made available transcriptome for identical experimental conditions (see the accompanying article by Kole et al.), the database can be used to (i) mine novel targets whose translation is modulated by sensory organ use, (ii) cross-validate experimental protocols from the same developmental time point, and (iii) statistically map the molecular pathways of cortical plasticity at a columnar and laminar resolution.


Proteomics , Sensory Deprivation/physiology , Somatosensory Cortex/metabolism , Animals , Female , Mice, Inbred C57BL
...