Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 61, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38418840

RESUMEN

We present a novel approach for Stimulated Raman Scattering (SRS) spectroscopy in which a hyper spectral resolution and high-speed spectral acquisition are achieved by employing amplified offset-phase controlled fs-pulse bursts. We investigate the method by solving the coupled non-linear Schrödinger equations and validate it by numerically characterizing SRS in molecular nitrogen as a model compound. The spectral resolution of the method is found to be determined by the inverse product of the number of pulses in the burst and the intraburst pulse separation. The SRS spectrum is obtained through a motion-free scanning of the offset phase that results in a sweep of the Raman-shift frequency. Due to high spectral resolution and fast motion-free scanning the technique is beneficial for a number SRS-based applications such as gas sensing and chemical analysis.

2.
Opt Lett ; 49(1): 149-152, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134174

RESUMEN

We systematically present experimental and theoretical results for the dual-wavelength switching of 1560 nm, 75 fs signal pulses (SPs) driven by 1030 nm, and 270 fs control pulses (CPs) in a dual-core fiber (DCF). We demonstrate a switching contrast of 31.9 dB, corresponding to a propagation distance of 14 mm, achieved by launching temporally synchronized SP-CP pairs into the fast core of the DCF with moderate inter-core asymmetry. Our analysis employs a system of three coupled propagation equations to identify the compensation of the asymmetry by nonlinearity as the physical mechanism behind the efficient switching performance.

3.
Opt Express ; 31(22): 37040-37049, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017841

RESUMEN

Multi-photon resonant spectroscopies require tunable narrowband excitation to deliver spectral selectivity and, simultaneously, high temporal intensity to drive a nonlinear-optical process. These contradictory requirements are achievable with bursts of ultrashort pulses, which provides both high intensity and tunable narrowband peaks in the frequency domain arising from spectral interference. However, femtosecond pulse bursts need special attention during their amplification [Optica7, 1758 (2020)10.1364/OPTICA.403184], which requires spectral peak suppression to increase the energy safely extractable from a chirped-pulse amplifier (CPA). Here, we present a method combining safe laser CPA, relying on spectral scrambling, with a parametric frequency converter that automatically restores the desired spectral peak structure and delivers narrow linewidths for bursts of ultrashort pulses at microjoule energies. The shown results pave the way to new high-energy ultrafast laser sources with controllable spectral selectivity.

4.
Phys Chem Chem Phys ; 25(6): 4656-4666, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722912

RESUMEN

We report on a combined experimental and numerical study of photoelectron circular dichroism (PECD) induced by intense few-cycle laser pulses, using methyloxirane as the molecular example. Our experiments reveal a remarkably pronounced sensitivity of the PECD strength of double-ionization on the carrier-envelope phase (CEP) of the laser pulses. By comparison to the simulations, which reproduce the measured CEP-dependence for specific orientations of the molecules in the lab frame, we attribute the origin of the observed CEP-dependence of PECD to the CEP-induced modulation of ionization from different areas of the wave functions of three dominant orbitals.

5.
ACS Photonics ; 10(1): 84-91, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36691427

RESUMEN

In this work, we introduce a simplified approach to efficiently extend the high harmonic generation (HHG) cutoff in gases without the need for laser frequency conversion via parametric processes. Instead, we employ postcompression and red-shifting of a Yb:CaF2 laser via stimulated Raman scattering (SRS) in a nitrogen-filled stretched hollow core fiber. This driving scheme circumvents the low-efficiency window of parametric amplifiers in the 1100-1300 nm range. We demonstrate this approach being suitable for upscaling the power of a driver with an optimal wavelength for HHG in the highly desirable XUV range between 200 and 300 eV, up to the carbon K-edge. Due to the combination of power scalability of a low quantum defect ytterbium-based laser system with the high conversion efficiency of the SRS technique, we expect a significant increase in the generated photon flux in comparison with established platforms for HHG in the water window. We also compare HHG driven by the SRS scheme with the conventional self-phase modulation (SPM) scheme.

6.
Phys Rev E ; 106(5-2): 055210, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559482

RESUMEN

The introduction of mid-IR optical parametric chirped pulse amplifiers has catalyzed interest in multimillijoule, infrared femtosecond pulse-based filamentation. As tunneling ionization is a fundamental first stage in these high-intensity laser-matter interactions, characterizing the process is critical to understand derivative topical studies on femtosecond filamentation and self-focusing. Here, we report direct nonintrusive measurements of total electron count and electron number densities generated at 3.9 µm femtosecond midinfrared tunneling ionization of atmospheric air using constructive-elastic microwave scattering. Subsequently, we determine photoionization rates to be in the range 5.0×10^{8}-6.1×10^{9}s^{-1} for radiation intensities of 1.3×10^{13}-1.9×10^{14}W/cm^{2}, respectively. The proposed approach paves the wave to precisely tabulate photoionization rates in mid-IR for a broad range of intensities and gas types and to study plasma dynamics at mid-IR filamentation.

7.
Appl Opt ; 60(32): 10191-10198, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34807127

RESUMEN

We present a complex study of pulse-energy-controlled solitonic self-switching of femtosecond pulses at wavelengths of 1700 and 1560 nm in two nonlinear high-index contrast dual-core fibers having different levels of slight asymmetry. In the case of the fiber with higher dual-core asymmetry excited by 1700 nm pulses, the highest switching contrast of 20.8 dB at 40 mm fiber length was demonstrated. It was accompanied by multiple exchanges of the dominant core at the fiber output, which is a strong signature of the soliton-based switching process. In the case of the fiber with lower dual-core asymmetry, excited by 1560 nm pulses, the highest switching contrast of 21.4 dB at 35 mm fiber length was achieved with a broadband character of the switching in the spectral range of 1450-1650 nm. Both demonstrations represent progress in all-optical switching studies at these particular wavelengths thanks to a comparison between their results, which reveals the requirement of a higher level of dual-core symmetry for applicable C-band operation.

8.
Light Sci Appl ; 10(1): 53, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692333

RESUMEN

Generating intense ultrashort pulses with high-quality spatial modes is crucial for ultrafast and strong-field science and can be achieved by nonlinear supercontinuum generation (SCG) and pulse compression. In this work, we propose that the generation of quasi-stationary solitons in periodic layered Kerr media can greatly enhance the nonlinear light-matter interaction and fundamentally improve the performance of SCG and pulse compression in condensed media. With both experimental and theoretical studies, we successfully identify these solitary modes and reveal their unified condition for stability. Space-time coupling is shown to strongly influence the stability of solitons, leading to variations in the spectral, spatial and temporal profiles of femtosecond pulses. Taking advantage of the unique characteristics of these solitary modes, we first demonstrate single-stage SCG and the compression of femtosecond pulses from 170 to 22 fs with an efficiency >85%. The high spatiotemporal quality of the compressed pulses is further confirmed by high-harmonic generation. We also provide evidence of efficient mode self-cleaning, which suggests rich spatiotemporal self-organization of the laser beams in a nonlinear resonator. This work offers a route towards highly efficient, simple, stable and highly flexible SCG and pulse compression solutions for state-of-the-art ytterbium laser technology.

9.
Biomed Opt Express ; 12(12): 7327-7337, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35003836

RESUMEN

We present a robust fiber-based setup for Bessel-like beam extended depth-of-focus Fourier-domain optical coherence microscopy, where the Bessel-like beam is generated in a higher order mode fiber module. In this module a stable guided LP02 core mode is selectively excited by a long period grating written in the higher order mode fiber. Imaging performance of this system in terms of lateral resolution and depth of focus was analyzed using samples of suspended microbeads and compared to the case where illumination is provided by the fundamental LP01 mode of a single mode fiber. Illumination with the LP02 mode allowed for a lateral resolution down to 2.5 µm as compared to 4.5 µm achieved with the LP01 mode of the single mode fiber. A three-fold enhancement of the depth of focus compared to a Gaussian beam with equally tight focus is achieved with the LP02 mode. Analysis of the theoretical lateral point spread functions for the case of LP01 and LP02 illumination agrees well with the experimental data. As the design space of waveguides and long-period gratings allows for further optimization of the beam parameters of the generated Bessel-like beams in an all-fiber module, this approach offers a robust and yet flexible alternative to free-space optics approaches or the use of conical fiber tips.

10.
Nanomaterials (Basel) ; 11(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375116

RESUMEN

The generation of high order harmonics from femtosecond mid-IR laser pulses in ZnO has shown great potential to reveal new insight into the ultrafast electron dynamics on a few femtosecond timescale. In this work we report on the experimental investigation of photoluminescence and high-order harmonic generation (HHG) in a ZnO single crystal and polycrystalline thin film irradiated with intense femtosecond mid-IR laser pulses. The ellipticity dependence of the HHG process is experimentally studied up to the 17th harmonic order for various driving laser wavelengths in the spectral range 3-4 µm. Interband Zener tunneling is found to exhibit a significant excitation efficiency drop for circularly polarized strong-field pump pulses. For higher harmonics with energies larger than the bandgap, the measured ellipticity dependence can be quantitatively described by numerical simulations based on the density matrix equations. The ellipticity dependence of the below and above ZnO band gap harmonics as a function of the laser wavelength provides an efficient method for distinguishing the dominant HHG mechanism for different harmonic orders.

11.
Phys Rev Lett ; 125(6): 063202, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32845670

RESUMEN

We report on an experimental and theoretical study of the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a tagged carrier-envelope phase. We find that a field-driven electron transfer process from one argon atom across the system boundary to the other argon atom triggers subcycle electron-electron interaction dynamics in the neighboring atom. This attosecond electron-transfer process between distant entities and its implications manifests itself as a distinct phase-shift between the measured asymmetry of electron emission curves of the Ar^{+}+Ar^{2+} and Ar^{2+}+Ar^{2+} fragmentation channels. This letter discloses a strong-field route to controlling the dynamics in molecular compounds through the excitation of electronic dynamics on a distant molecule by driving intermolecular electron-transfer processes.

12.
Phys Rev Lett ; 125(2): 023202, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32701337

RESUMEN

We establish a generalized picture of the phase sensitivity of laser-induced directional bond breaking using the H_{2} molecule as the example. We show that the well-known proton ejection anisotropy measured with few-cycle pulses as a function of their carrier-envelope phases arises as an amplitude modulation of an intrinsic anisotropy that is sensitive to the laser phase at the ionization time and determined by the molecule's electronic structure. Our work furthermore reveals a strong electron-proton correlation that may open up a new approach to experimentally accessing the laser-sub-cycle intramolecular electron dynamics also in larger molecules.

13.
Phys Rev Lett ; 124(10): 103201, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216425

RESUMEN

We report on the unambiguous observation of the subcycle ionization bursts in sequential strong-field double ionization of H_{2} and their disentanglement in molecular frame photoelectron angular distributions. This observation was made possible by the use of few-cycle laser pulses with a known carrier-envelope phase, in combination with multiparticle coincidence momentum imaging. The approach demonstrated here will allow sampling of the intramolecular electron dynamics and the investigation of charge-state-specific Coulomb distortions on emitted electrons in polyatomic molecules.

14.
Opt Express ; 28(2): 980-990, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121817

RESUMEN

A conventional hollow core fiber (HCF) scheme is implemented to investigate spectral broadening of Titanium:Sapphire (Ti-Sa) femtosecond laser pulses in saturated hydrocarbon molecules compared to unsaturated ones. While the saturated molecules exhibit a spectral broadening similar to noble gases, for the unsaturated ones with π bonds, broadening towards blue is restrained. Numerical simulations underpin that it is a combination of group velocity dispersion (GVD) and Raman scattering which limits the spectral broadening for the unsaturated molecules. Compression of low energy ∼40fs pulses to ∼8fs using saturated hydrocarbons is demonstrated, suggesting the feasibility of this media for high repetition rate laser pulse compression.

15.
Opt Express ; 28(2): 1722-1737, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121879

RESUMEN

The performance of regenerative amplifiers at high repetition rates is often limited by the occurrence of bifurcations induced by a destabilization of the pulse-to-pulse dynamics. While bifurcations can be suppressed by increasing the seed energy using dedicated pre-amplifiers, the availability of adjustable filters and control electronics in modern pulse amplifiers allows to exploit feedback strategies to cope with these instabilities. In this paper, we present a theoretical and experimental analysis of active feedback methods to stabilize otherwise unstable operational regimes of regenerative amplifiers. To this end, the dynamics of regenerative amplifiers are investigated starting from a general space-dependent description to obtain a generalization of existing models from the literature. Suitable feedback strategies are then developed utilizing measurements of the output pulse energies or the transmitted pump light, respectively. The effectiveness of the proposed approach is highlighted by experimental results for a Yb:CaF2-based regenerative amplifier.

16.
Nat Commun ; 11(1): 292, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941895

RESUMEN

Extreme nonlinear interactions of THz electromagnetic fields with matter are the next frontier in nonlinear optics. However, reaching this frontier in free space is limited by the existing lack of appropriate powerful THz sources. Here, we experimentally demonstrate that two-color filamentation of femtosecond mid-infrared laser pulses at 3.9 µm allows one to generate ultrashort sub-cycle THz pulses with sub-milijoule energy and THz conversion efficiency of 2.36%, resulting in THz field amplitudes above 100 MV cm-1. Our numerical simulations predict that the observed THz yield can be significantly upscaled by further optimizing the experimental setup. Finally, in order to demonstrate the strength of our THz source, we show that the generated THz pulses are powerful enough to induce nonlinear cross-phase modulation in electro-optic crystals. Our work paves the way toward free space extreme nonlinear THz optics using affordable table-top laser systems.

17.
Glob Chall ; 3(1): 1800070, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31565357

RESUMEN

Water is the major natural resource that enables life on our planet. Rapid detection of water pollution that occurs due to both human activity and natural cataclysms is imperative for environmental protection. Analytical chemistry-based techniques are generally not suitable for rapid monitoring because they involve collection of water samples and analysis in a laboratory. Laser-based approaches such as laser-induced breakdown spectroscopy (LIBS) may offer a powerful alternative, yet conventional LIBS relies on the use of tightly focused laser beams, requiring a stable air-water interface in a controlled environment. Reported here is a proof-of-principle, quantitative, simultaneous measurement of several representative heavy-metal contaminants in water, at ppm-level concentrations, using ultraintense femtosecond laser pulses propagating in air in the filamentation regime. This approach is straightforwardly extendable to kilometer-scale standoff distances, under adverse atmospheric conditions and is insensitive to the movements of the water surface due to the topography and water waves.

18.
Nano Lett ; 19(6): 3563-3568, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117748

RESUMEN

Einstein established the quantum theory of radiation and paved the way for modern laser physics including single-photon absorption by charge carriers and finally pumping an active gain medium into population inversion. This can be easily understood in the particle picture of light. Using intense, ultrashort pulse lasers, multiphoton pumping of an active medium has been realized. In this nonlinear interaction regime, excitation and population inversion depend not only on the photon energy but also on the intensity of the incident pumping light, which can be still described solely by the particle picture of light. We demonstrate here that lowering significantly the pump photon energy further still enables population inversion and lasing in semiconductor nanowires. The extremely high electric field of the pump bends the bands and enables tunneling of electrons from the valence to the conduction band. In this regime, the light acts by the classical Coulomb force and population inversion is entirely due to the wave nature of electrons, thus the excitation becomes independent of the frequency but solely depends on the incident intensity of the pumping light.

19.
Phys Rev Lett ; 123(26): 263201, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31951453

RESUMEN

We introduce and experimentally demonstrate a method where the two intrinsic timescales of a molecule, the slow nuclear motion and the fast electronic motion, are simultaneously measured in a photoelectron photoion coincidence experiment. In our experiment, elliptically polarized, 750 nm, 4.5 fs laser pulses were focused to an intensity of 9×10^{14} W/cm^{2} onto H_{2}. Using coincidence imaging, we directly observe the nuclear wave packet evolving on the 1sσ_{g} state of H_{2}^{+} during its first round-trip with attosecond temporal and picometer spatial resolution. The demonstrated method should enable insight into the first few femtoseconds of the vibronic dynamics of ionization-induced unimolecular reactions of larger molecules.

20.
Opt Express ; 26(22): 29460-29470, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470109

RESUMEN

We present an infrared source operating at 1937 nm center wavelength capable of generating 1.35 mJ pulse energies with 1 kHz repetition rate and 2 GW peak power based on a diode-pumped Tm:YAP regenerative amplifier. The obtained pulses after 45 round trips have been compressed down to 360 fs. Using only a small portion (15 µJ) of the output of the system we managed to generate a white light continuum in a 3 mm YAG window that exhibits the viability of the system as a suitable candidate for a pumping source of a mid-infrared optical parametric amplifier.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...