Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Mar Pollut Bull ; 196: 115648, 2023 Nov.
Article En | MEDLINE | ID: mdl-37844481

Rare earth elements (REEs) are a group of chemicals widely used in emerging technologies today, and are often labeled as potential environmental contaminants. The Cayos Cochinos Archipelago is a protected area of Honduras, Central America, with intertidal and supratidal sands, making it a prime candidate for pollution research. In December 2022, sand samples from the Cayos Cochinos area was collected and analyzed by X-ray fluorescence to determine the levels of REEs and some less-studied trace elements (TEs). Based on the findings, REEs mean contents (µg g-1 d.w.) fluctuated between 2.96 for Y to 667.1 for Nd, while TEs ranged from 10.37 for Th to 3896.2 for Sr. Also, the results showed significantly higher levels of La, Pr, Y, Sr, Ba, and Th in the supratidal zone than in the intertidal zone. The data are useful as a basis for understanding the presence of chemical elements in near-shore marine areas and subsequently help identify sustainable practices that will reduce the impacts of these chemicals.


Metals, Rare Earth , Trace Elements , Sand , Trace Elements/analysis , Metals, Rare Earth/analysis , Environmental Pollution/analysis , Caribbean Region
2.
Biology (Basel) ; 10(4)2021 Apr 09.
Article En | MEDLINE | ID: mdl-33918970

Intermittent rivers and ephemeral streams (IRES) are increasingly studied because of their often-unique aquatic and terrestrial biodiversity, biogeochemical processes and associated ecosystem services. This study is the first to examine the hydrological, physicochemical and taxonomic variability during the dry-wet transition of an intermittent river in the Chilean Mediterranean Zone. Based on 30-years of river monitoring data and the TREHS tool, the hydrology of the river was characterised. Overall, the river shows a significant reduction in streamflow (-0.031 m3/s per year) and a substantial increase of zero flow days (+3.5 days per year). During the transition of hydrological states, variations were observed in the environmental conditions and invertebrate communities. During the drying phase, abundance, richness, and diversity were highest, while species turn-over was highest during base flow conditions. The disconnected pools and the flow resumption phases were characterised by high proportions of lentic taxa and non-insects, such as the endemic species of bivalves, gastropods, and crustaceans, highlighting the relevance of disconnected pools as refuges. Future climatic change scenarios are expected to impact further the hydrology of IRES, which could result in the loss of biodiversity. Biomonitoring and conservation programmes should acknowledge these important ecosystems.

3.
Glob Chang Biol ; 25(5): 1591-1611, 2019 05.
Article En | MEDLINE | ID: mdl-30628191

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.


Nutrients/analysis , Organic Chemicals/analysis , Rivers/chemistry , Biofilms/growth & development , Biological Availability , Climate , Climate Change , Geologic Sediments/chemistry , Nitrates/analysis , Plant Leaves/chemistry
...