Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(23): 6981-6989, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814739

RESUMEN

In this study, we conducted a high-pressure investigation of Cu2-xSe nanostructures with pyramid- and plate-like morphologies, created through cation exchange from zinc-blende CdSe nanocrystals and wurtzite CdSe nanoplatelets respectively. Using a diamond anvil cell setup at the APS synchrotron, we observed the phase transitions in the Cu2-xSe nanostructures up to 40 GPa, identifying a novel CsCl-type lattice with Pm3̅m symmetry above 4 GPa. This CsCl-type structure, previously unreported in copper selenides, was partially retained after decompression. Our results indicate that the initial crystalline structure of CdSe does not affect the stability of Cu2-xSe nanostructures formed via cation exchange. Both morphologies of Cu2-xSe sintered under compression, potentially contributing to the stabilization of the high-pressure phase through interfacial defects. These findings are significant for discovering new phases with potential applications in future technologies.

3.
Polymers (Basel) ; 16(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38337197

RESUMEN

Photocatalytic self-cleaning coatings with a high surface area are important for a wide range of applications, including optical coatings, solar panels, mirrors, etc. Here, we designed a highly porous TiO2 coating with photoinduced self-cleaning characteristics and very high hydrophilicity. This was achieved using the swelling-assisted sequential infiltration synthesis (SIS) of a block copolymer (BCP) template, which was followed by polymer removal via oxidative thermal annealing. The quartz crystal microbalance (QCM) was employed to optimize the infiltration process by estimating the mass of material infiltrated into the polymer template as a function of the number of SIS cycles. This adopted swelling-assisted SIS approach resulted in a smooth uniform TiO2 film with an interconnected network of pores. The synthesized film exhibited good crystallinity in the anatase phase. The resulting nanoporous TiO2 coatings were tested for their functional characteristics. Exposure to UV irradiation for 1 h induced an improvement in the hydrophilicity of coatings with wetting angle reducing to unmeasurable values upon contact with water droplets. Furthermore, their self-cleaning characteristics were tested by measuring the photocatalytic degradation of methylene blue (MB). The synthesized porous TiO2 nanostructures displayed promising photocatalytic activity, demonstrating the degradation of approximately 92% of MB after 180 min under ultraviolet (UV) light irradiation. Thus, the level of performance was comparable to the photoactivity of commercial anatase TiO2 nanoparticles of the same quantity. Our results highlight a new robust approach for designing hydrophilic self-cleaning coatings with controlled porosity and composition.

5.
Nano Converg ; 10(1): 18, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37186268

RESUMEN

The two-dimensional CsPbBr3 nanoplatelets have a quantum well electronic structure with a band gap tunable with sample thicknesses in discreet steps based upon the number of monolayers. The polarized optical properties of CsPbBr3 nanoplatelets are studied using fluorescence anisotropy and polarized transient absorption spectroscopies. Polarized spectroscopy shows that they have absorption and emission transitions which are strongly plane-polarized. In particular, photoluminescence excitation and transient absorption measurements reveal a band-edge polarization approaching 0.1, the limit of isotropic two-dimensional ensembles. The degree of anisotropy is found to depend on the thickness of the nanoplatelets: multiple measurements show a progressive decrease in optical anisotropy from 2 to 5 monolayer thick nanoplatelets. In turn, larger cuboidal CsPbBr3 nanocrystals, are found to have consistently positive anisotropy which may be attributed to symmetry breaking from ideal perovskite cubes. Optical measurements of anisotropy are described with respect to the theoretical framework developed to describe exciton fine structure in these materials. The observed planar absorption and emission are close to predicted values at thinner nanoplatelet sizes and follow the predicted trend in anisotropy with thickness, but with larger anisotropy than theoretical predictions. Dominant planar emission, albeit confined to the thinnest nanoplatelets, is a valuable attribute for enhanced efficiency of light-emitting devices.

6.
Nat Commun ; 13(1): 6774, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351911

RESUMEN

Synthesizing patchy particles with predictive control over patch size, shape, placement and number has been highly sought-after for nanoparticle assembly research, but is fraught with challenges. Here we show that polymers can be designed to selectively adsorb onto nanoparticle surfaces already partially coated by other chains to drive the formation of patchy nanoparticles with broken symmetry. In our model system of triangular gold nanoparticles and polystyrene-b-polyacrylic acid patch, single- and double-patch nanoparticles are produced at high yield. These asymmetric single-patch nanoparticles are shown to assemble into self-limited patch‒patch connected bowties exhibiting intriguing plasmonic properties. To unveil the mechanism of symmetry-breaking patch formation, we develop a theory that accurately predicts our experimental observations at all scales-from patch patterning on nanoparticles, to the size/shape of the patches, to the particle assemblies driven by patch‒patch interactions. Both the experimental strategy and theoretical prediction extend to nanoparticles of other shapes such as octahedra and bipyramids. Our work provides an approach to leverage polymer interactions with nanoscale curved surfaces for asymmetric grafting in nanomaterials engineering.

7.
J Chem Phys ; 154(1): 014202, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33412885

RESUMEN

Nanoscale hyperspectral techniques-such as electron energy loss spectroscopy (EELS)-are critical to understand the optical response in plasmonic nanostructures, but as systems become increasingly complex, the required sampling density and acquisition times become prohibitive for instrumental and specimen stability. As a result, there has been a recent push for new experimental methodologies that can provide comprehensive information about a complex system, while significantly reducing the duration of the experiment. Here, we present a pan-sharpening approach to hyperspectral EELS analysis, where we acquire two datasets from the same region (one with high spatial resolution and one with high spectral fidelity) and combine them to achieve a single dataset with the beneficial properties of both. This work outlines a straightforward, reproducible pathway to reduced experiment times and higher signal-to-noise ratios, while retaining the relevant physical parameters of the plasmonic response, and is generally applicable to a wide range of spectroscopy modalities.

8.
Nat Commun ; 10(1): 1505, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944324

RESUMEN

Solid-solid phase transitions are processes ripe for the discovery of correlated atomic motion in crystals. Here, we monitor an order-disorder transition in real-time in nanoparticles of the super-ionic solid, Cu2-xSe. The use of in-situ high-resolution transmission electron microscopy allows the spatiotemporal evolution of the phase transition within a single nanoparticle to be monitored at the atomic level. The high spatial resolution reveals that cation disorder is nucleated at low co-ordination, high energy sites of the nanoparticle where cationic vacancy layers intersect with surface facets. Time-dependent evolution of the reciprocal lattice of individual nanoparticles shows that the initiation of cation disorder is accompanied by a ~3% compression of the anionic lattice, establishing a correlation between these two structural features of the lattice. The spatiotemporal insights gained here advance understanding of order-disorder transitions, ionic structure and transport, and the role of nanoparticle surfaces in phase transitions.

9.
Angew Chem Int Ed Engl ; 57(30): 9315-9319, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29863294

RESUMEN

The search for ion-conductive solid electrolytes for Li+ batteries is an important scientific and technological challenge with economic and sustainable energy implications. In this study, nanocrystals (NCs) of the ion conductor copper selenide (Cu2-y Se) were doped with Li by the process of cation exchange. Li2x Cu2-2x Se alloy NCs were formed at intermediate stages of the reaction, which was followed by phase segregation into Li2 Se and Cu2 Se domains. Li-doped Cu2-y Se NCs and Li2 Se NCs exhibit a possible SI phase at moderately elevated temperatures and warrant further ion-conductance tests. These findings may guide the design of nanostructured super-ionic electrolytes for Li+ transport.

10.
J Phys Chem Lett ; 9(8): 1970-1976, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609463

RESUMEN

An optically modulated scanning tunneling microscopy technique developed for measurement of single-molecule optical absorption is used here to image the light absorption by individual Au nanoislands and Au nanostructures. The technique is shown to spatially map, with nanometer resolution, localized surface plasmons (LSPs) excited within the nanoislands. Electrodynamic simulations demonstrate the correspondence of the measured images to plasmonic near-field intensity maps. The optical STM imaging technique captures the wavelength, polarization, and geometry dependence of the LSP resonances and their corresponding near-fields. Thus, we introduce a tool for real-space, nanometer-scale visualization of optical energy absorption, transport, and dissipation in complex plasmonic nanostructures.

11.
RSC Adv ; 8(60): 34476-34482, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35548607

RESUMEN

ZnO has industrial utility as a solid sorbent for the removal of polluting sulfur compounds from petroleum-based fuels. Small ZnO nanoparticles may be more effective in terms of sorption capacity and ease of sulfidation as compared to bulk ZnO. Motivated by this promise, here, we study the sulfidation of ZnO NPs and uncover the solid-state mechanism of the process by crystallographic and optical absorbance characterization. The wurtzite-structure ZnO NPs undergo complete sulfidation to yield ZnS NPs with a drastically different zincblende structure. However, in the early stages, the ZnO NP lattice undergoes only substitutional doping by sulfur, while retaining its wurtzite structure. Above a threshold sulfur-doping level of 30 mol%, separate zincblende ZnS grains nucleate, which grow at the expense of the ZnO NPs, finally yielding ZnS NPs. Thus, the full oxide to sulfide transformation cannot be viewed simply as a topotactic place-exchange of anions. The product ZnS NPs formed by nucleation-growth share neither the crystallographic structure nor the size of the initial ZnO NPs. The reaction mechanism may inform the future design of nanostructured ZnO sorbents.

12.
Nat Commun ; 8: 14514, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28216615

RESUMEN

Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, 'liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...