Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
ACS Omega ; 9(20): 22476-22487, 2024 May 21.
Article En | MEDLINE | ID: mdl-38799333

PPh3O.hemihydrate polymorphs and 11 assorted PPh3O cocrystals collectively constitute a reliable stock to pursue a systematic analysis aiming to investigate the impacts of some vital issues on the TPPO.H-bond donor aggregates. The issues highlighted herein are (i) effect of varying acidity of H-bond donors on the degeneracy of lone pairs of the H-bond acceptor (PPh3O), (ii) effectiveness of the |V(r)|/G(r) and H(r)/ρ(r) parameters as a covalency metric, (iii) 3c-4e bonding in the covalent PPh3O.nitric acid cocrystal, (iv) salient features of H-bond interaction energy and an interplay of its components, (v) an intrinsic bond strength scale for the PPh3O cocrystals, and (vi) reliable empirical relations between several bond descriptors for a quick estimation of interaction energy. To be specific about point (vi), we have propounded two promising avenues for a fast semiquantitative calculation of interaction energy from an endearing nonenergetic parameter, viz., bond length: dO-H···O → ρBCP (MAPE = 2.36%) → ESAPT0 (MAPE = 9.26%), and dO-H···O → IBSI (MAPE = 1.87%) → ESAPT0 (MAPE = 9.66%). All the aforesaid issues have been explored in detail through the QTAIM, NBO, and IBSI analyses (M06-2X-D3/def2-TZVP level), as well as by the SAPT study at the SAPT0/aug-cc-pVDZ platform. The statistically valid correlation studies can be particularly conducive for practical purposes as a transformative extension of the established facts into postulates for the unknown cocrystals.

2.
J Biomol Struct Dyn ; 42(6): 3204-3222, 2024 Apr.
Article En | MEDLINE | ID: mdl-37216286

The zymogen protease Plasminogen (Plg) and its active form plasmin (Plm) carry out important functions in the blood clot disintegration (breakdown of fibrin fibers) process. Inhibition of plasmin effectively reduces fibrinolysis to circumvent heavy bleeding. Currently, available Plm inhibitor tranexamic acid (TXA) used for treating severe hemorrhages is associated with an increased incidence of seizures which in turn were traced to gamma-aminobutyric acid antagonistic activity (GABAa) in addition to having multiple side effects. Fibrinolysis can be suppressed by targeting the three important protein domains: the kringle-2 domain of tissue plasminogen activator, the kringle-1 domain of plasminogen, and the serine protease domain of plasminogen. In the present study, one million molecules were screened from the ZINC database. These ligands were docked to their respective protein targets using Autodock Vina, Schrödinger Glide, and ParDOCK/BAPPL+. Thereafter, the drug-likeness properties of the ligands were evaluated using Discovery Studio 3.5. Subsequently, we subjected the protein-ligand complexes to molecular dynamics simulation of 200 ns in GROMACS. The identified ligands P76(ZINC09970930), C97(ZINC14888376), and U97(ZINC11839443) for each protein target are found to impart higher stability and greater compactness to the protein-ligand complexes. Principal component analysis (PCA) implicates, that the identified ligands occupy smaller phase space, form stable clusters, and provide greater rigidity to the protein-ligand complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis reveals that P76, C97, and U97 exhibit better binding free energy (ΔG) when compared to that of the standard ligands. Thus, our findings can be useful for the development of promising anti-fibrinolytic agents.Communicated by Ramaswamy H. Sarma.


Plasminogen , Tissue Plasminogen Activator , Plasminogen/chemistry , Plasminogen/metabolism , Plasminogen/pharmacology , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Fibrinolysin/metabolism , Ligands , Fibrinolysis
3.
J Thromb Haemost ; 21(4): 917-932, 2023 04.
Article En | MEDLINE | ID: mdl-36696201

BACKGROUND: Tissue factor (TF), a transmembrane glycoprotein, plays a profound role in the formation of the tissue factor-factor VIIa (TF-FVIIa) complex that initiates factor Xa (FXa) generation followed by thrombin activation and clot formation. Previous reports suggest that TF-FVIIa coagulant activity at the cell surface may be affected by various processes, including changes in cholesterol content and posttranslational modifications of TF. Numerous studies were conducted but yielded inconclusive results about the effect of cholesterol on TF expression. OBJECTIVE: The present study aimed to understand how cholesterol affects structural modulations on the tissue factor-factor VIIa-factor Xa ternary complex (TF-FVIIa-FXa). Additionally, we aimed to illustrate the effect of palmitoylation on the Cys245 residue of TF and understand its structural implications on the TF-FVIIa-FXa. METHODS: We set up the following 4 systems in different lipid environments: TF-FVIIa-FXa in POPC:POPS (CS), TF-FVIIa-FXa in POPC:POPS:CHOL (CSL), Palmitoylated TF-FVIIa-FXa in POPC:POPS:CHOL (CSLP), and Palmitoylated TF-FVIIa-FXa in POPC:CHOL (CLP), respectively, and subjected them to molecular dynamics simulation. RESULTS: Hydrogen-bond and contact probability analysis were performed between various important domains of TF-FVIIa-FXa and notable novel interactions: Asn93FVIIa:L-Lys48TF, Arg178FVIIa:H-Asp95FXa:B, Lys20FVIIa:H-Glu193FXa:A, Arg178FVIIa:H-Asp97FXa:B, and Arg153FVIIa:H-Gln135FXa:B have been reported. The protein stability study implies that the CS and CLP systems are thermodynamically less stable than CSL and CSLP systems. CONCLUSION: Analysis of molecular dynamic simulation data suggests that the presence of cholesterol and palmitoylation may contribute to structural rigidity, stability, and compactness of key domains of TF-FVIIa-FXa by augmenting protein-protein and protein-lipid interactions.


Factor Xa , Thromboplastin , Humans , Factor VIIa/chemistry , Factor VIIa/metabolism , Factor Xa/chemistry , Factor Xa/metabolism , Lipids/chemistry , Lipoylation , Molecular Dynamics Simulation , Thromboplastin/chemistry , Thromboplastin/metabolism , Cholesterol/chemistry , Cholesterol/metabolism
4.
J Phys Chem A ; 125(39): 8723-8733, 2021 Oct 07.
Article En | MEDLINE | ID: mdl-34559965

Achieving mechanistic understanding of transport in complex environments such as inside cells or at polymer interfaces is challenging. We need better ways to image transport in 3-D and better single particle tracking algorithms to determine transport that are not systemically biased toward any classical motion model. Here we present an unbiased single particle tracking algorithm: Knowing Nothing Outside Tracking (KNOT). KNOT uses point clouds provided by iterative deconvolution to educate individual particle localizations and link particle positions between frames to achieve 2-D and 3-D tracking. Information from prior point clouds fuels an independent adaptive motion model for each particle to avoid global models that could introduce biases. KNOT competes with or surpasses other 2-D methods from the 2012 particle tracking challenge while accurately tracking adsorption dynamics of proteins on polymer surfaces and early endosome transport in live cells in 3-D. We apply KNOT to study 3-D endosome transport to reveal new physical insight into locally directed and diffusive transport in live cells. Our analysis demonstrates better accuracy in classifying local motion and its direction compared to previous methods, revealing intricate intracellular transport heterogeneities.

7.
Life Sci Alliance ; 2(4)2019 08.
Article En | MEDLINE | ID: mdl-31296567

Plasma membrane (PM) curvature defines cell shape and intracellular organelle morphologies and is a fundamental cell property. Growth/proliferation is more stimulated in flatter cells than the same cells in elongated shapes. PM-anchored K-Ras small GTPase regulates cell growth/proliferation and plays key roles in cancer. The lipid-anchored K-Ras form nanoclusters selectively enriched with specific phospholipids, such as phosphatidylserine (PS), for efficient effector recruitment and activation. K-Ras function may, thus, be sensitive to changing lipid distribution at membranes with different curvatures. Here, we used complementary methods to manipulate membrane curvature of intact/live cells, native PM blebs, and synthetic liposomes. We show that the spatiotemporal organization and signaling of an oncogenic mutant K-Ras G12V favor flatter membranes with low curvature. Our findings are consistent with the more stimulated growth/proliferation in flatter cells. Depletion of endogenous PS abolishes K-Ras G12V PM curvature sensing. In cells and synthetic bilayers, only mixed-chain PS species, but not other PS species tested, mediate K-Ras G12V membrane curvature sensing. Thus, K-Ras nanoclusters act as relay stations to convert mechanical perturbations to mitogenic signaling.


Cell Membrane/enzymology , Cell Membrane/ultrastructure , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Cell Membrane/chemistry , Epithelial Cells/metabolism , Humans , Liposomes/metabolism , Phosphatidylserines/metabolism , Protein Isoforms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/genetics , Spatial Analysis , Spatio-Temporal Analysis
8.
Chem Biol Drug Des ; 94(2): 1441-1456, 2019 08.
Article En | MEDLINE | ID: mdl-30903639

RAS mutations account for >15% of all human tumors, and of these ~85% are due to mutations in a particular RAS gene: KRAS. Recent studies revealed that KRAS harbors four druggable allosteric sites. Here, we have (a) used molecular simulations to generate ensembles of wild type and four major oncogenic KRAS mutants (G12V, G12D, G13D, and Q61H); (b) characterized the druggability of each allosteric pocket in each protein; (c) conducted extensive ensemble-based virtual screening using pocket-tailored ligand libraries; (d) prioritized hits through hierarchical postdocking analysis; and (e) validated predicted hits with NMR. Of the 785 diverse potential hits identified by our in silico analysis, we tested 90 for their ability to bind KRAS using NMR and found that nine cause backbone amide chemical shift perturbations of residues near the functionally responsive switch loops, suggesting potential binding. We conducted detailed biophysical analyses on a novel indole-based compound to demonstrate the potential of our workflow to yield lead compounds. We believe the detailed information documented in this work regarding the druggability profile of each allosteric site and the chemical fingerprints of compounds that target them will serve as vital resources for future structure-based drug design efforts against KRAS, a high-value target for cancer therapy.


Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemistry , Mutation, Missense , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Amino Acid Substitution , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor , Enzyme Inhibitors/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Nuclear Magnetic Resonance, Biomolecular , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
9.
Biophys J ; 116(2): 179-183, 2019 01 22.
Article En | MEDLINE | ID: mdl-30616834

Recent studies have shown that the small GTPase KRAS adopts multiple orientations with respect to the plane of anionic model membranes, whereby either the three C-terminal helices or the three N-terminal ß-strands of the catalytic domain face the membrane. This has functional implications because, in the latter, the membrane occludes the effector-interacting surface. However, it remained unclear how membrane reorientation occurs and, critically, whether it occurs in the cell in which KRAS operates as a molecular switch in signaling pathways. Herein, using data from a 20 µs-long atomistic molecular dynamics simulation of the oncogenic G12V-KRAS mutant in a phosphatidylcholine/phosphatidylserine bilayer, we first show that internal conformational fluctuations of flexible regions in KRAS result in three distinct membrane orientations. We then show, using single-molecule fluorescence resonance energy transfer measurements in native lipid nanodiscs derived from baby hamster kidney cells, that G12V-KRAS samples three conformational states that correspond to the predicted orientations. The combined results suggest that relatively small energy barriers separate orientation states and that signaling-competent conformations dominate the overall population.


Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Proto-Oncogene Proteins p21(ras)/chemistry , Animals , Cell Line , Cricetinae , Cricetulus , Fluorescence Resonance Energy Transfer , Mutation, Missense , Nanostructures/chemistry , Phosphatidylcholines/chemistry , Phosphatidylserines/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Single Molecule Imaging
10.
J Biomol Struct Dyn ; 37(14): 3707-3720, 2019 09.
Article En | MEDLINE | ID: mdl-30238846

Two distinct populations, active and cryptic forms of tissue factor (TF), reside on the cell surface. Apart from phospholipid contribution, various models have been introduced to explain decryption/encryption of TF. The proposed model, the switching of Cys186-Cys209 bond of TF, has become the matter of controversy. However, it is well accepted that this disulfide has an immense influence upon ligand factor VIIa (FVIIa) for its binding. However, molecular level understanding for this remains unveiled due to lack of detailed structural information. In this regard, we have performed the molecular dynamic study of membrane-bound TF/TF-FVIIa in both the forms (±Cys186-Cys209 allosteric disulfide bond), individually. Dynamic study depicts that disulfide bond provides structural rigidity of TF in both free and ligand-bound forms. This disulfide bond also governs the conformation of FVIIa structure as well as the binding affinity of FVIIa toward TF. Significant differences in lipid-protein interaction profiles of both the forms of TF in the complex were observed. Two forms of TF, oxidized and reduced, have different structural conformation and behave differentially toward its ligand FVIIa. This disulfide bond not only alters the conformation of GLA domain of FVIIa in the vicinity but allosterically regulates the conformation of the distantly located FVIIa protease domain. We suggest that the redox status of the disulfide bond also governs the lipid-mediated interactions with both TF and FVIIa. Communicated by Ramaswamy H. Sarma.


Cell Membrane/metabolism , Disulfides/chemistry , Factor VIIa/chemistry , Factor VIIa/metabolism , Thromboplastin/chemistry , Thromboplastin/metabolism , Algorithms , Allosteric Regulation , Catalytic Domain , Lipids/chemistry , Molecular Dynamics Simulation , Protein Domains , Thermodynamics
11.
Cell Physiol Biochem ; 51(4): 1658-1678, 2018.
Article En | MEDLINE | ID: mdl-30504730

BACKGROUND/AIMS: The conformation, folding and lipid binding properties of the intestinal fatty acid binding proteins (IFABP) have been extensively investigated. In contrast, the functional aspects of these proteins are not understood and matter of debates. In this study, we aim to address the deleterious effects of FA overload on cellular components, particularly mitochondria; and how IFABP helps in combating this stress by restoring the mitochondrial dynamics. METHODS: In the present study the functional aspect of IFABP under conditions of lipid stress was studied by a string of extensive in-cell studies; flow cytometry by fluorescence-activated cell sorting (FACS), confocal imaging, western blotting and quantitative real time PCR. We deployed ectopic expression of IFABP in rescuing cells under the condition of lipid stress. Again in order to unveil the mechanistic insights of functional traits, we arrayed extensive computational approaches by means of studying centrality calculations along with protein-protein association and ligand induced cluster dissociation. While addressing its functional importance, we used FCS and in-silico computational analyses, to show the structural distribution and the underlying mechanism of IFABP's action. RESULTS: Ectopic expression of IFABP in HeLa cells has been found to rescue mitochondrial morphological dynamics and restore membrane potential, partially preventing apoptotic damage induced by the increased FAs. These findings have been further validated in the functionally relevant intestinal Caco-2 cells, where the native expression of IFABP protects mitochondrial morphology from abrogation induced by FA overload. However, this native level expression is insufficient to protect against apoptotic cell death, which is rescued, at least partially in cells overexpressing IFABP. In addition, shRNA mediated IFABP knockdown in Caco-2 cells compromises mitochondrial dynamics and switches on intrinsic apoptotic pathways under FA-induced metabolic stress. CONCLUSION: To summarize, the present study implicates functional significance of IFABP in controlling ligand-induced damage in mitochondrial dynamics and apoptosis.


Apoptosis , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Mitochondrial Dynamics , Caco-2 Cells , HeLa Cells , Humans , Mitochondria/metabolism , Mitochondria/ultrastructure , Models, Molecular , Stress, Physiological
12.
PLoS One ; 13(4): e0194930, 2018.
Article En | MEDLINE | ID: mdl-29608611

Genetic switches frequently include DNA loops secured by proteins. Recent studies of the lambda bacteriophage repressor (CI), showed that this arrangement in which the protein links two sets of three operators separated by approximately 2.3 kbp, optimizes both the stability and dynamics of DNA loops, compared to an arrangement with just two sets of two operators. Because adjacent dimers interact pairwise, we hypothesized that the odd number of operators in each set of the lambda regulatory system might have evolved to allow for semi-specific, pair-wise interactions that add stability to the loop while maintaining it dynamic. More generally, additional CI dimers may bind non-specifically to flanking DNA sequences making the genetic switch more sensitive to CI concentration. Here, we tested this hypothesis using spectroscopic and imaging approaches to study the binding of the lambda repressor (CI) dimer protein to DNA fragments. For fragments with only one operator and a short flanking sequence, fluorescence correlation spectroscopy measurements clearly indicated the presence of two distinct DNA-CI complexes; one is thought to have a non-specifically bound CI dimer on the flanking sequence. Scanning force micrographs of CI bound to DNA with all six operators revealed wild-type or mutant proteins bound at operator positions. The number of bound, wild-type proteins increased with CI concentration and was larger than expected for strictly specific binding to operators. In contrast, a mutant that fails to oligomerize beyond a dimer, D197G, only bound to operators. These data are evidence that CI cooperativity promotes oligomerization that extends from operator sites to influence the thermodynamics and kinetics of CI-mediated looping.


Bacterial Outer Membrane Proteins/metabolism , Bacteriophage lambda/physiology , Porins/metabolism , Protein Multimerization , Receptors, Virus/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Binding Sites , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Order , Mutation , Porins/chemistry , Porins/genetics , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/genetics
13.
J Am Chem Soc ; 139(38): 13466-13475, 2017 09 27.
Article En | MEDLINE | ID: mdl-28863262

Self-assembly of plasma membrane-associated Ras GTPases has major implications to the regulation of cell signaling. However, the structural basis of homo-oligomerization and the fractional distribution of oligomeric states remained undetermined. We have addressed these issues by deciphering the distribution of dimers and higher-order oligomers of K-Ras4B, the most frequently mutated Ras isoform in human cancers. We focused on the constitutively active G12V K-Ras and two of its variants, K101E and K101C/E107C, which respectively destabilize and stabilize oligomers. Using raster image correlation spectroscopy and number and brightness analysis combined with fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and electron microscopy in live cells, we show that G12V K-Ras exists as a mixture of monomers, dimers and larger oligomers, while the K101E mutant is predominantly monomeric and K101C/E107C is dominated by oligomers. This observation demonstrates the ability of K-Ras to exist in multiple oligomeric states whose population can be altered by interfacial mutations. Using molecular modeling and simulations we further show that K-Ras uses two partially overlapping interfaces to form compositionally and topologically diverse oligomers. Our results thus provide the first detailed insight into the multiplicity, structure, and membrane organization of K-Ras homomers.


Cell Membrane/metabolism , Protein Multimerization , ras Proteins/chemistry , ras Proteins/metabolism , Animals , Hominidae , Humans , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutant Proteins/ultrastructure , ras Proteins/genetics , ras Proteins/ultrastructure
14.
J Midlife Health ; 7(3): 147-149, 2016.
Article En | MEDLINE | ID: mdl-27721644

Calcified broad ligament leiomyoma is a rare benign lesion in postmenopausal age group. It causes diagnostic confusion with solid calcified adnexal mass and large bladder calculi at the pelvic region. Clinical and radiological diagnoses were confirmed by histopathology of the hysterectomy specimen. We hereby present a case of heavily calcified broad ligament fibroid in a postmenopausal woman.

15.
Biochemistry ; 55(32): 4457-68, 2016 08 16.
Article En | MEDLINE | ID: mdl-27454000

There has been widespread interest in studying early intermediate states and their roles in protein folding. The interest in intermediate states has been further emphasized in the recent literature because of their implications for protein aggregation. Unfortunately, direct kinetic characterization of intermediates has been difficult because of the limited time resolutions offered by the kinetic techniques and the heterogeneity of the folding and aggregation landscape. Even in equilibrium experiments, the characterization of intermediate states could be difficult because (a) their populations in equilibrium could be low and/or (b) they lack any specific biochemical or biophysical signatures for their identification. In this paper, we have used fluorescence correlation spectroscopy to study the nature of a low-pH intermediate state of the intestinal fatty acid binding protein, a small protein with predominantly ß-sheet structure. Our results have shown that the pH 3 intermediate diffuses faster than the folded protein and has strong helix forming propensity. These behaviors support Lim's hypothesis according to which even an entirely ß-sheet protein would form helical bundles at the early stage. Using dynamic light scattering and thioflavin T binding measurements, we have observed that the pH 3 intermediate is prone to aggregation. We believe that early helix formation is the result of a local effect, which originates from the interaction of the neighboring amino acids around the hydrophobic core residues. This early intermediate reorganizes subsequently, and this structural reorganization is initiated by the destabilizing interactions induced by the distant residues, unfavorable entropic costs, and steric constraints of the hydrophobic side chains. Mutational analyses show further that the increase in the hydrophobicity in the hydrophobic core region increases the population of the α-helical intermediate, enhancing the aggregation propensity of the protein, while an identical change, distant from the hydrophobic core, does not show any effect. This study re-emphasizes an overlap between the folding and aggregation landscape of a protein, where the fine-tuning between the local and global effects may be important for the protein to fold efficiently or to aggregate.


Fatty Acid-Binding Proteins/chemistry , Protein Aggregates , Protein Folding , Amino Acid Sequence , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Unfolding/drug effects , Urea/pharmacology
16.
Inorg Chem ; 53(20): 11307-15, 2014 Oct 20.
Article En | MEDLINE | ID: mdl-25275927

Building upon the precedent of catalytically active (NHC)Cu-FeCp(CO)2 complexes, a series of (NHC)Cu-[M] complexes were synthesized via the addition of Na(+)[M](-) reagents to (NHC)CuCl synthons. The different [M](-) anions used span a range of 7 × 10(7) relative nucleophilicity units, allowing for controlled variation of nucleophile/electrophile pairing in the heterobimetallic species. Direct Cu-M bonds (M = Cr, Mn, Co, Mo, Ru, W) formed readily when the bulky IPr carbene was used as a support. Crystallographic characterization and computational examination of these complexes was conducted. For the smaller IMes carbene, structural isomerism was observed when using the weakest [M](-) nucleophiles, with (IMes)Cu-[M] and {(IMes)2Cu}{Cu[M]2} isomers being observed in equilibrium. Collectively, the series of complexes provides a toolbox for catalytic reaction discovery with precise control of structure-function relationships.

17.
Inorg Chem ; 51(2): 844-50, 2012 Jan 16.
Article En | MEDLINE | ID: mdl-22220745

A sonochemical method was employed to prepare reactive nanoparticles of FeSbO(4) at 300 °C, which is the lowest calcination temperature reported so far for preparing FeSbO(4). A systematic evolution of the FeSbO(4) phase formation as a function of temperature was monitored by in situ synchrotron X-ray measurements. The 300 and 450 °C calcined powders exhibited specific surface areas of 116 and 75 m(2)/g, respectively. The X-ray photoelectron spectra analysis confirmed the presence of mainly Fe(3+) and Sb(5+) in the calcined powder. The response of the fabricated sensors (using both 300 and 450 °C calcined powders) toward 1000 ppm and 1, 2, 4, and 8% hydrogen, respectively, has been monitored at various operating temperatures. The sensors fabricated using 300 °C calcined powder exhibited a response of 76% toward 4% H(2) gas at an operating temperature of 300 °C, while those fabricated using 450 °C calcined powder exhibited a higher response of 91% with a quick recovery toward 4% H(2) gas at 300 °C. The results confirmed that a higher calcination temperature was preferred to achieve better sensitivity and selectivity toward hydrogen in comparison to other reducing gases such as butane and methane. The experimental results confirmed that the sonochemical process can be easily used to prepare FeSbO(4) nanoparticles for various catalytic applications as demonstrated. Here, we project FeSbO(4) as a new class of material exhibiting high sensitivity toward a wide range of hydrogen gas. Such sensors that could detect high concentrations of hydrogen may find application in nuclear reactors where there will be a leakage of hydrogen.

18.
Nanotechnology ; 22(27): 275506, 2011 Jul 08.
Article En | MEDLINE | ID: mdl-21613735

The gas sensitivity exhibited by nanoparticles of 1 wt% Pd catalysed antimony doped tin dioxide (ATO) prepared by a citrate-nitrate process is reported here. The reduction of particle size to <3 nm, a dimension smaller than double the thickness of the charge depletion layer, has resulted in an exceptionally high butane sensitivity and selectivity. The sensitivity and selectivity of ATO particles of different sizes unequivocally proved that reducing the size of particles to below twice the Debye length dimension produces materials with exceptionally high sensitivity and selectivity for sensor applications. The sensitivity of the samples towards 1000 ppm butane varied in the order 98%>55%>47%, for CNP>SP>CP samples having crystallite sizes of the order of 2.4 nm to 18 nm to 25 nm, respectively. The ATO nanoparticles exhibited not only a remarkable increase in gas sensitivity of around 98% towards 1000 ppm butane at 350 °C, but also a preferential selectivity to butane compared to other gases such as CO, CO2, SO2, CH4 and H2. In addition to the exceptionally high sensitivity and selectivity, the developed sensors also exhibited an improved response time and long term stability, which are of paramount importance for practical device development.

...