Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478017

RESUMEN

SM proteins including Sly1 are essential cofactors of SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants and chemically defined in vitro assays, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and that close-range tethering promotes trans-complex assembly when cis-SNARE assembly is a competing process. Further, we demonstrate that the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: it is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. "Split Sed5," with Habc presented solely as a soluble fragment, can function both in vitro and in vivo. Habc appears to facilitate events leading to lipid mixing rather than promoting opening or stability of the fusion pore.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas Munc18/metabolismo , Unión Proteica , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
STAR Protoc ; 3(3): 101503, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35776648

RESUMEN

GPI-APs are a family of proteins attached to the plasma membrane by a glycoplipid that undergoes remodeling of the glycan and lipid structure during transport to the cell surface. We describe a protocol to induce the synthesis of a GPI-anchored protein whereby EtNP is added to Man2 but not removed. By temporally manipulating the expression of Gpi7p, the enzyme that adds EtNP to Man2, in ted1Δ dcr2Δ cells prior to the expression of a canonical GPI-AP (mNeon-Gas1p), EtNP is attached to Man2 of de novo synthesized mNeon-Gas1p and cannot be removed. This strategy provides a means to temporally and spatially track the transport of remodeling-defective GPI-APs in yeast cells. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).


Asunto(s)
Manosa , Saccharomyces cerevisiae , Etanolaminas , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles , Manosa/metabolismo , Fosfatidiletanolaminas/metabolismo , Polisacáridos/metabolismo , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 50(9): 5335-5348, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35544198

RESUMEN

Eukaryotic uL11 contains a conserved MPPKFDP motif at the N-terminus that is not found in archaeal and bacterial homologs. Here, we determined the solution structure of human uL11 by NMR spectroscopy and characterized its backbone dynamics by 15N-1H relaxation experiments. We showed that these N-terminal residues are unstructured and flexible. Structural comparison with ribosome-bound uL11 suggests that the linker region between the N-terminal domain and C-terminal domain of human uL11 is intrinsically disordered and only becomes structured when bound to the ribosomes. Mutagenesis studies show that the N-terminal conserved MPPKFDP motif is involved in interacting with the P-complex and its extended protuberant domain of uL10 in vitro. Truncation of the MPPKFDP motif also reduced the poly-phenylalanine synthesis in both hybrid ribosome and yeast mutagenesis studies. In addition, G→A/P substitutions to the conserved GPLG motif of helix-1 reduced poly-phenylalanine synthesis to 9-32% in yeast ribosomes. We propose that the flexible N-terminal residues of uL11, which could extend up to ∼25 Šfrom the N-terminal domain of uL11, can form transient interactions with the uL10 that help to fetch and fix it into a position ready for recruiting the incoming translation factors and facilitate protein synthesis.


Asunto(s)
Biosíntesis de Proteínas , Saccharomyces cerevisiae , Células Eucariotas/metabolismo , Humanos , Fenilalanina/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética
4.
Cell Rep ; 37(13): 110120, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965437

RESUMEN

Newly synthesized glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive remodeling prior to transport to the plasma membrane. GPI-AP remodeling events serve as quality assurance signatures, and complete remodeling of the anchor functions as a transport warrant. Using a genetic approach in yeast cells, we establish that one remodeling event, the removal of ethanolamine-phosphate from mannose 2 via Ted1p (yPGAP5), is essential for cell viability in the absence of the Golgi-localized putative phosphodiesterase Dcr2p. While GPI-APs in which mannose 2 has not been remodeled in dcr2 ted1-deficient cells can still be delivered to the plasma membrane, their presence elicits a unique stress response. Stress is sensed by Mid2p, a constituent of the cell wall integrity pathway, whereupon signal promulgation culminates in activation of the spindle assembly checkpoint. Our results are consistent with a model in which cellular stress response and chromosome segregation checkpoint pathways are functionally interconnected.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Manosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Pared Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Ligadas a GPI/genética , Aparato de Golgi/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Biol Cell ; 31(26): 2883-2891, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33112703

RESUMEN

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive posttranslational modifications and remodeling, including the addition and subsequent removal of phosphoethanolamine (EtNP) from mannose 1 (Man1) and mannose 2 (Man2) of the glycan moiety. Removal of EtNP from Man1 is catalyzed by Cdc1p, an event that has previously been considered to occur in the endoplasmic reticulum (ER). We establish that Cdc1p is in fact a cis/medial Golgi membrane protein that relies on the COPI coatomer for its retention in this organelle. We also determine that Cdc1p does not cycle between the Golgi and the ER, and consistent with this finding, when expressed at endogenous levels ER-localized Cdc1p-HDEL is unable to support the growth of cdc1Δ cells. Our cdc1 temperature-sensitive alleles are defective in the transport of a prototypical GPI-AP-Gas1p to the cell surface, a finding we posit reveals a novel Golgi-localized quality control warrant. Thus, yeast cells scrutinize GPI-APs in the ER and also in the Golgi, where removal of EtNP from Man2 (via Ted1p in the ER) and from Man1 (by Cdc1p in the Golgi) functions as a quality assurance signal.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Membrana Celular/metabolismo , Pared Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mutación/genética , Temperatura
6.
Mol Biol Cell ; 31(19): 2139-2155, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673164

RESUMEN

The mechanisms employed in the retention of Golgi resident membrane proteins are diverse and include features such as the composition and length of the protein's transmembrane domain and motifs that mediate direct or indirect associations with COPI-coatomer. However, in sum the current compendium of mechanisms cannot account for the localization of all Golgi membrane proteins, and this is particularly the case for proteins such as the glycosyltransferases. Here we describe a novel mechanism that mediates the steady-state retention of a subset of glycosyltransferases in the Golgi of budding yeast cells. This mechanism is mediated by a deubiquitinase complex composed of Bre5p and Ubp3p. We show that in the absence of this deubiquitinase certain glycosyltransferases are mislocalized to the vacuole, where they are degraded. We also show that Bre5p/Ubp3p clients bind to COPI-coatomer via a series of positively charged amino acids in their cytoplasmically exposed N-termini. Furthermore, we identify two proteins (Ktr3p and Mnn4p) that show a requirement for both Bre5p/Ubp3p as well as the COPI-coatomer-affiliated sorting receptor Vps74p. We also establish that some proteins show a nutrient-dependent role for Vps74p in their Golgi retention. This study expands the repertoire of mechanisms mediating the retention of Golgi membrane proteins.


Asunto(s)
Endopeptidasas/metabolismo , Glicosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología
7.
Traffic ; 21(3): 274-296, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31883188

RESUMEN

Protein retention and the transport of proteins and lipids into and out of the Golgi is intimately linked to the biogenesis and homeostasis of this sorting hub of eukaryotic cells. Of particular importance are membrane proteins that mediate membrane fusion events with and within the Golgi-the Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). In the Golgi of budding yeast cells, the syntaxin SNARE Sed5p oversees membrane fusion events. Determining how Sed5p is localized to and trafficked within the Golgi is critical to informing our understanding of the mechanism(s) of biogenesis and homeostasis of this organelle. Here we establish that the steady-state localization of Sed5p to the Golgi appears to be primarily conformation-based relying on intra-molecular associations between the Habc domain and SNARE-motif while its tribasic COPI-coatomer binding motif plays a role in intra-Golgi retention.


Asunto(s)
Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Proteínas de la Membrana/fisiología , Proteínas SNARE/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Qa-SNARE/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Biochemistry ; 58(36): 3744-3754, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31419120

RESUMEN

The lateral stalk of ribosomes constitutes the GTPase-associated center and is responsible for recruiting translation factors to the ribosomes. The eukaryotic stalk contains a P-complex, in which one molecule of uL10 (formerly known as P0) protein binds two copies of P1/P2 heterodimers. Unlike bacterial uL10, eukaryotic uL10 has an extended protuberant (uL10ext) domain inserted into the N-terminal RNA-binding domain. Here, we determined the solution structure of the extended protuberant domain of Bombyx mori uL10 by nuclear magnetic resonance spectroscopy. Comparison of the structures of the B. mori uL10ext domain with eRF1-bound and eEF2-bound ribosomes revealed significant structural rearrangement in a "hinge" region surrounding Phe183, a residue conserved in eukaryotic but not in archaeal uL10. 15N relaxation analyses showed that residues in the hinge region have significantly large values of transverse relaxation rates. To test the role of the conserved phenylalanine residue, we created a yeast mutant strain expressing an F181A variant of uL10. An in vitro translation assay showed that the alanine substitution increased the level of polyphenylalanine synthesis by ∼33%. Taken together, our results suggest that the hinge motion of the uL10ext domain facilitates the binding of different translation factors to the GTPase-associated center during protein synthesis.


Asunto(s)
Biosíntesis de Proteínas , Dominios Proteicos , Proteínas Ribosómicas/química , Secuencia de Aminoácidos , Animales , Bombyx/química , Escherichia coli/genética , Técnicas de Inactivación de Genes , Mutagénesis Sitio-Dirigida , Mutación , Resonancia Magnética Nuclear Biomolecular , Proteínas Ribosómicas/genética , Ribosomas/química , Saccharomyces cerevisiae/genética , Alineación de Secuencia
9.
Mol Biol Cell ; 27(17): 2633-41, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385338

RESUMEN

The formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes between opposing membranes is an essential prerequisite for fusion between vesicles and their target compartments. The composition and length of a SNARE's transmembrane domain (TMD) is also an indicator for their steady-state distribution in cells. The evolutionary conservation of the SNARE TMD, together with the strict requirement of this feature for membrane fusion in biochemical studies, implies that the TMD represents an essential protein module. Paradoxically, we find that for several essential ER- and Golgi-localized SNAREs, a TMD is unnecessary. Moreover, in the absence of a covalent membrane tether, such SNAREs can still support ER-Golgi vesicle transport and recapitulate established genetic interactions. Transport anomalies appear to be restricted to retrograde trafficking, but these defects are overcome by the attachment of a C-terminal lipid anchor to the SNARE. We conclude that the TMD functions principally to support the recycling of Qb-, Qc-, and R-SNAREs and, in so doing, retrograde transport.


Asunto(s)
Proteínas SNARE/metabolismo , Proteínas SNARE/fisiología , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
Mol Biol Cell ; 26(23): 4280-93, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26378254

RESUMEN

We recently identified a new COPI-interacting KXD/E motif in the C-terminal cytosolic tail (CT) of Arabidopsis endomembrane protein 12 (AtEMP12) as being a crucial Golgi retention mechanism for AtEMP12. This KXD/E motif is conserved in CTs of all EMPs found in plants, yeast, and humans and is also present in hundreds of other membrane proteins. Here, by cloning selective EMP isoforms from plants, yeast, and mammals, we study the localizations of EMPs in different expression systems, since there are contradictory reports on the localizations of EMPs. We show that the N-terminal and C-terminal GFP-tagged EMP fusions are localized to Golgi and post-Golgi compartments, respectively, in plant, yeast, and mammalian cells. In vitro pull-down assay further proves the interaction of the KXD/E motif with COPI coatomer in yeast. COPI loss of function in yeast and plants causes mislocalization of EMPs or KXD/E motif-containing proteins to vacuole. Ultrastructural studies further show that RNA interference (RNAi) knockdown of coatomer expression in transgenic Arabidopsis plants causes severe morphological changes in the Golgi. Taken together, our results demonstrate that N-terminal GFP fusions reflect the real localization of EMPs, and KXD/E is a conserved motif in COPI interaction and Golgi retention in eukaryotes.


Asunto(s)
Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Aparato de Golgi/genética , Células HEK293 , Humanos , Espacio Intracelular , Lisina/metabolismo , Proteínas de la Membrana/genética , Plantas Modificadas Genéticamente , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/metabolismo
11.
12.
Traffic ; 13(11): 1496-507, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22889169

RESUMEN

Vps74p, a member of the GOLPH3 protein family, binds directly to coatomer and the cytoplasmic tails of a subset of Golgi-resident glycosyltransferases to mediate their Golgi retention. We identify a cluster of arginine residues at the N-terminal end of GOLPH3 proteins that are necessary and sufficient to mediate coatomer binding. While loss of coatomer binding renders Vps74p non-functional for glycosyltransferase retention, the Golgi membrane-binding capabilities of the mutant protein are not significantly reduced. We establish that the oligomerization status and phosphatidylinositol-4-phosphate-binding properties of Vps74p largely account for the membrane-binding capacity of the protein and identify an Arf1p-Vps74p interaction as a potential contributing factor in Vps74p Golgi membrane association.


Asunto(s)
Arginina/metabolismo , Proteínas Portadoras/metabolismo , Proteína Coatómero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Manosiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
13.
Cold Spring Harb Perspect Biol ; 3(8): a005264, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21525512

RESUMEN

The protein composition of the Golgi is intimately linked to its structure and function. As the Golgi serves as the major protein-sorting hub for the secretory pathway, it faces the unique challenge of maintaining its protein composition in the face of constant influx and efflux of transient cargo proteins. Much of our understanding of how proteins are retained in the Golgi has come from studies on glycosylation enzymes, largely because of the compartment-specific distributions these proteins display. From these and other studies of Golgi membrane proteins, we now understand that a variety of retention mechanisms are employed, the majority of which involve the dynamic process of iterative rounds of retrograde and anterograde transport. Such mechanisms rely on protein conformation and amino acid-based sorting signals as well as on properties of transmembrane domains and their relationship with the unique lipid composition of the Golgi.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Humanos , Transporte de Proteínas
14.
Traffic ; 9(10): 1629-52, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18764818

RESUMEN

Overexpression of the Golgi and endoplasmic reticulum (ER) syntaxins SYP31 and SYP81 strongly inhibits constitutive secretion. By comparing the secreted reporter alpha-amylase with the ER-retained reporter alpha-amylase-HDEL, it was concluded that SYP81 overexpression inhibits both retrograde and anterograde transport, while SYP31 overexpression mainly affected anterograde transport. Of the other interacting SNAREs investigated, only the overexpression of MEMB11 led to an inhibition of protein secretion. Although the position of a fluorescent tag does not influence the correct localization of the fusion protein, only N-terminal-tagged SYP31 retained the ability of the untagged SNARE to inhibit transport. C-terminal-tagged SYP31 failed to exhibit this effect. Overexpression of both wild-type and N-terminal-tagged syntaxins caused standard Golgi marker proteins to redistribute into the ER. Nevertheless, green fluorescent protein (GFP)-SYP31 was still visible as fluorescent punctae, which, unlike SYP31-GFP, were resistant to brefeldin A treatment. Immunogold electron microscopy showed that endogenous SYP81 is not only present at the ER but also in the cis Golgi, indicating that this syntaxin cycles between these two organelles. However, when expressed at non-inhibitory levels, YFP-SYP81 was seen to locate principally to subdomains of the ER. These punctate structures were physically separated from the Golgi, suggesting that they might possibly reflect the position of ER import sites.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismo , Vías Secretoras/fisiología , Clonación Molecular , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Retículo Endoplásmico/fisiología , Aparato de Golgi/enzimología , Aparato de Golgi/genética , Aparato de Golgi/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Inmunoelectrónica , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plásmidos , Transporte de Proteínas/fisiología , Protoplastos/enzimología , Protoplastos/metabolismo , Proteínas Qa-SNARE/biosíntesis , Proteínas Qa-SNARE/genética , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/fisiología , alfa-Amilasas/metabolismo
15.
Science ; 321(5887): 404-7, 2008 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-18635803

RESUMEN

Golgi-resident glycosyltransferases are a family of enzymes that sequentially modify glycoproteins in a subcompartment-specific manner. These type II integral membrane proteins are characterized by a short cytoplasmically exposed amino-terminal tail and a luminal enzymatic domain. The cytoplasmic tails play a role in the localization of glycosyltransferases, and coat protein complex I (COPI) vesicle-mediated retrograde transport is also involved in their Golgi localization. However, the tails of these enzymes lack known COPI-binding motifs. Here, we found that Vps74p bound to a pentameric motif present in the cytoplasmic tails of the majority of yeast Golgi-localized glycosyltransferases, as well as to COPI. We propose that Vps74p maintains the steady-state localization of Golgi glycosyltransferases dynamically, by promoting their incorporation into COPI-coated vesicles.


Asunto(s)
Proteínas Portadoras/metabolismo , Glicosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coat de Complejo I/metabolismo , Retículo Endoplásmico/metabolismo , Glicosiltransferasas/química , Datos de Secuencia Molecular , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
16.
Mol Biol Cell ; 17(10): 4282-99, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16855025

RESUMEN

Using nuclear magnetic resonance spectroscopy, we establish that the N-terminal domain of the yeast vacuolar R-SNARE Nyv1p adopts a longin-like fold similar to those of Sec22b and Ykt6p. Nyv1p is sorted to the limiting membrane of the vacuole via the adaptor protein (AP)3 adaptin pathway, and we show that its longin domain is sufficient to direct transport to this location. In contrast, we found that the longin domains of Sec22p and Ykt6p were not sufficient to direct their localization. A YXX phi-like adaptin-dependent sorting signal (Y31GTI34) unique to the longin domain of Nyv1p mediates interactions with the AP3 complex in vivo and in vitro. We show that amino acid substitutions to Y31GTI34 (Y31Q;I34Q) resulted in mislocalization of Nyv1p as well as reduced binding of the mutant protein to the AP3 complex. Although the sorting of Nyv1p to the limiting membrane of the vacuole is dependent upon the Y31GTI34 motif, and Y31 in particular, our findings with structure-based amino acid substitutions in the mu chain (Apm3p) of yeast AP3 suggest a mechanistically distinct role for this subunit in the recognition of YXX phi-like sorting signals.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Complejo 3 de Proteína Adaptadora/genética , Complejo 3 de Proteína Adaptadora/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Transporte Biológico , Proteínas Fluorescentes Verdes/genética , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
17.
Trends Biochem Sci ; 29(12): 682-8, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15544955

RESUMEN

Longins are the only R-SNAREs that are common to all eukaryotes and are characterized by a conserved N-terminal domain with a profilin-like fold called a longin domain (LD). These domains seem to be essential for regulating membrane trafficking and they mediate unexpected biochemical functions via a range of protein-protein and intramolecular binding specificities. In addition to the longins, proteins involved in the regulation of intracellular trafficking, such as subunits of the adaptor and transport protein particle complexes, also have LD-like folds. The functions and cellular localization of longins are regulated at several levels and the longin prototypes TI-VAMP, Sec22 and Ykt6 show different distributions among eukaryotes, reflecting their modular and functional diversity. In mammals, TI-VAMP and Ykt6 are crucial for neuronal function, and defects in longin structure or function might underlie some human neurological pathologies.


Asunto(s)
Fusión de Membrana , Proteínas de la Membrana/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Proteínas Contráctiles/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Profilinas , Proteínas R-SNARE , Proteínas SNARE
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA