Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(6): 1741-1747, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324378

RESUMEN

Optical gain and lasing in colloidal nanocrystals are often hindered by sub-nanosecond rapid Auger non-radiative recombination, especially under continuous wave optical or electrical excitation. This study demonstrates amplified spontaneous emission (ASE) from CdSe/CdS/ZnS quantum dot (QD) solids through prolonged pulsed optical pumping over 10 ns. The incorporation of CdS and ZnS double shells on CdSe QDs effectively decelerates the Auger process in multiexcitonic states by extending the electron wave function and enhancing dielectric screening. Furthermore, we engineer smooth, densely packed QD solid films that efficiently guide the optical mode, achieving substantial net gain values under nanosecond pumping. The proposed approach helps observe ASE with gain thresholds of 0.84 and 1.5 mJ/cm2 under optical pumping pulse widths of 6 and 15 ns, respectively. This advancement can promote continuous pumping in colloidal QD gain systems, opening new avenues for optoelectronic applications.

2.
ACS Appl Mater Interfaces ; 13(5): 6805-6812, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33497202

RESUMEN

We report facile growth methods for high-quality monolayer and multilayer MoS2 films using MoOCl4 as the vapor-phase molecular Mo precursor. Compared to the conventional covalent solid-type Mo precursors, the growth pressure of MoOCl4 can be precisely controlled. This enables the selection of growth mode by adjusting growth pressure, which facilitates the control of the growth behavior as the growth termination at a monolayer or as the continuous growth to a multilayer. In addition, the use of carbon-free precursors eliminates concerns about carbon contamination in the produced MoS2 films. Systematic studies for unveiling the growth mechanism proved two growth modes, which are predominantly the physisorption and chemisorption of MoOCl4. Consequently, the thickness of MoS2 can be controlled by our method as the application demands.

3.
ACS Appl Mater Interfaces ; 12(36): 40870-40878, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32805805

RESUMEN

Although surface engineering has been regarded to be a great approach to modulate the optical and electrical properties of nanomaterials, the spontaneous covalent functionalization on semiconducting 2H-MoS2 is a notoriously difficult process, while several reactions have been performed on metallic 1T-MoS2. This limitation in functionalization is attributed to the difficulty of electron transfer from 2H-TMD to the reacting molecules due to its semiconducting property and neutral charge state. Unfortunately, this is an all too important prerequisite step toward creating chemically reactive radical species for surface functionalization reactions. Herein, an electrochemical approach was developed for facilitating direct surface functionalization of 2H-MoS2 with 4-bromobenzene diazonium tetraborate (4-BBDT). Successful functionalization was characterized using various microscopic and spectroscopic analyses. During the course of investigating the change of optical transition seen for modified 2H-MoS2 using photoluminescence measurement combined with theoretical calculations, our study uncovered that the controlling S-C bond and sulfur vacancy generation could tune the electronic structure of functionalized 2H-MoS2.

4.
Nano Lett ; 20(9): 6263-6271, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32813529

RESUMEN

Photoexcited electron extraction from semiconductors can be useful for converting solar energy into useful forms of energy. Although InP quantum dots (QDs) are considered alternative materials for solar energy conversion, the inherent instability of bare InP QDs demands the use of passivation layers such as ZnS for practical applications, which impedes carrier extraction from the QDs. Here, we demonstrate that Cu-doped InP/ZnS (InP/Cu:ZnS) QDs improve the electron transfer ability due to hole capture by Cu dopants. Steady-state and time-resolved photoluminescence studies confirmed that electrons were effectively transferred from the InP/Cu:ZnS QDs to a benzoquinone acceptor by retarding the electron-hole recombination within the QD. We evaluated the photocatalytic H2 evolution performance of InP/Cu:ZnS QDs under visible light, which showed outstanding photocatalytic H2 evolution activity and stability under visible light illumination. The photocatalytic activity was preserved even in the absence of a cocatalyst.

5.
J Nanosci Nanotechnol ; 20(9): 5662-5666, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32331154

RESUMEN

Organic solar cell and OLED display devices are very sensitive to moisture, which leading to a fast degradation by the exposure to moisture and oxygen in the air. Therefore, in order to enhance the stability of the devices, a barrier film having WVTR (Water Vapor Transmission Rate) of 10-4 to 10-6 g/m²/day is required. In order to prepare the barrier film with excellent moisture blocking characteristics, perhydro polysilazane (PHPS) is used, which is developed to prepare an insulating film for semiconductors. Also a catalyst is added to lower the curing temperature to 100 °C or less. The result shows that the polysilazane is cured and converted to SiO2 under 100 °C in 30 min. WVTR of the polysilazane coated film is estimated to be 2.1×10-2 g/m²/day. In addition, when the inorganic layer such as SiO2 and Al2O3 is deposited on the planarization layer, the film shows excellent moisture blocking characteristics having WVTR to be 7.9×10-5 g/m²/day.

6.
Nanoscale ; 11(40): 18559-18567, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31342044

RESUMEN

The templated self-assembly of block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) can effectively create ultrafine, well-ordered nanostructures in the range of 5-30 nm. However, the self-assembled BCP patterns remain limited to possible morphological geometries and materials. Here, we introduce a novel and useful self-assembly method of di-BCP blends capable of generating diverse hybrid nanostructures consisting of oxide and metal materials through the rapid microphase separation of A-B/B-C BCP blends. We successfully obtained various hybridized BCP morphologies which cannot be acquired from a single di-BCP, such as hexagonally arranged hybrid dot and dot-in-hole patterns by controlling the mixing ratios of the solvents with a binary solvent annealing process. Furthermore, we demonstrate how the binary solvent vapor annealing process can provide a wide range of pattern geometries to di-BCP blends, showing a well-defined spontaneous one-to-one accommodation in dot-in-hole nanostructures. Specifically, we show clearly how the self-assembled BCPs can be functionalized via selective reduction and/or an oxidation process, resulting in the excellent positioning of confined silica nanodots into each nanospace of a Pt mesh. These results suggest a new method to achieve the pattern formation of more diverse and complex hybrid nanostructures using various blended BCPs.

7.
Nanoscale ; 11(21): 10463-10471, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31112192

RESUMEN

In this study, we designed and synthesized far-red- and near-infrared-emitting Cu-doped InP-based quantum dots (QDs), and we also demonstrated their highly specific and sensitive biological imaging ability. Cu-doped InP/ZnS (core/shell) QDs were prepared using the hot colloidal synthesis method in the organic phase. The ZnS shell passivates the surface and improves the photoluminescence (PL) intensity. However, the InP : Cu/ZnS (core : dopants/shell) QDs, which were obtained after the Cu dopant was incorporated into bare InP QDs, followed by ZnS shell coating, had relatively low PL intensities (maximum PL quantum yield (QY) was only ∼16%) presumably due to the formation of defect sites in the InP-core QDs caused by dopant migration from the InP core to the ZnS shell. We prepared high-quality InP/ZnS : Cu/ZnS (core/shell : dopant/outer-shell) QDs, where thin ZnS shell layers were grown on bare InP QDs prior to Cu ion doping to prevent dopant migration and obtained PL QYs as high as 40%. The native hydrophobic ligands of the as-synthesized Cu-doped QDs were replaced with hydrophilic ligands including dihydrolipoic acid and a zwitterionic ligand, which rendered the QDs water-soluble. These QDs exhibited remarkable colloidal stabilities over a wide pH range, with hydrodynamic diameters less than 10 nm. Modified QD surfaces can also be used in conjugation with other functional moieties to apply highly specific and sensitive imaging probes with very low background levels. As a proof-of-concept study, we successfully demonstrated the selective imaging of streptavidin beads with biotin-conjugated QDs. These decorated Cu-doped InP/ZnS (core/shell) QDs are promising biological-probe candidates for imaging and assaying with reduced concerns regarding toxicity.


Asunto(s)
Cobre/química , Puntos Cuánticos/química , Sulfuros/química , Compuestos de Zinc/química
8.
Chemphyschem ; 20(14): 1885-1889, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31099461

RESUMEN

A supra-quantum dot (SQD) is a three-dimensionally assembled QD structure composed of several hundreds to thousands of QDs connected through oriented attachments. Owing to their three-dimensional interconnected structures and relatively large volumes, impurity atoms are thermodynamically more stable in SQDs than in conventional QDs. Herein, we report the facile in-situ synthesis of colloidal Ag-doped CdSe SQDs. Ag dopants were efficiently incorporated into CdSe SQDs through the three-dimensional interconnection of Ag-doped primary CdSe QDs, as confirmed by elemental analysis combined with chemical etching. Photoelectron spectroscopic studies revealed that the Ag-doped CdSe SQDs exhibit n-type doping behavior, since the valence electrons from the interstitial Ag atoms are directly donated to the lattice.

9.
Adv Sci (Weinh) ; 6(6): 1802163, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30937277

RESUMEN

Methoxy-functionalized triphenylamine-imidazole derivatives that can simultaneously work as hole transport materials (HTMs) and interface-modifiers are designed for high-performance and stable perovskite solar cells (PSCs). Satisfying the fundamental electrical and optical properties as HTMs of p-i-n planar PSCs, their energy levels can be further tuned by the number of methoxy units for better alignment with those of perovskite, leading to efficient hole extraction. Moreover, when they are introduced between perovskite photoabsorber and low-temperature solution-processed NiO x interlayer, widely featured as an inorganic HTM but known to be vulnerable to interfacial defect generation and poor contact formation with perovskite, nitrogen and oxygen atoms in those organic molecules are found to work as Lewis bases that can passivate undercoordinated ion-induced defects in the perovskite and NiO x layers inducing carrier recombination, and the improved interfaces are also beneficial to enhance the crystallinity of perovskite. The formation of Lewis adducts is directly observed by IR, Raman, and X-ray photoelectron spectroscopy, and improved charge extraction and reduced recombination kinetics are confirmed by time-resolved photoluminescence and transient photovoltage experiments. Moreover, UV-blocking ability of the organic HTMs, the ameliorated interfacial property, and the improved crystallinity of perovskite significantly enhance the stability of PSCs under constant UV illumination in air without encapsulation.

10.
ACS Appl Mater Interfaces ; 10(50): 43768-43773, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30411612

RESUMEN

A supra-quantum dot (SQD) is a three-dimensional structure formed by the attachment of quantum dots. The SQDs have sizes of tens of nanometer and they maintain the characteristics of the individual quantum dots fairly well. Moreover, their sizes and elemental compositions can be tuned precisely. On the basis of their unique features, in this work, SQDs are used as constituents of the interpenetrating photoactive layers of inorganic nanocrystal p-n heterojunction solar cells to control the p-type and n-type domain sizes (i.e., p-n heterojunction areas) for optimizing the charge-carrier collection. SQD-containing p-n heterojunction solar cells exhibit improved charge transport and thereby higher power conversion efficiency (PCE) (3.03%) owing to their intermediate p-type and n-type domain sizes, which are between those of a bilayer nanorod p-n heterojunction solar cell (PCE: 1.21%) and an interpenetrating nanorod p-n heterojunction solar cell (PCE: 2.40%). This work demonstrates that the self-assembly of nanoscale materials can be utilized for tailoring the spatial distributions of charge carriers, which is beneficial for obtaining an enhanced device performance.

11.
J Am Chem Soc ; 139(22): 7603-7615, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28493679

RESUMEN

Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

13.
Adv Drug Deliv Rev ; 65(5): 622-48, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22975010

RESUMEN

Many kinds of inorganic nanoparticles (NPs) including semiconductor, metal, metal oxide, and lanthanide-doped NPs have been developed for imaging and therapy applications. Their unique optical, magnetic, and electronic properties can be tailored by controlling the composition, size, shape, and structure. Interaction of such NPs with cells and/or in vivo compartments is critically determined by the surface properties, and sophisticated control over the NP surface is essential to control their fate in biological environments. We review NP surface coating strategies using the categories of small surface ligand, polymer, and lipid. Use of small ligand molecules has the advantage of maintaining the minimal hydrodynamic (HD) size. Polymers can be advantageous in NP anchoring by combining multiple affinity groups. Encapsulation of NPs in polymers, lipids or surfactants can preserve the as-synthesized NPs. NP surface properties and reaction conditions should be carefully considered to obtain a bioconjugate that maintains the physicochemical properties of NP and functionalities of the conjugated biomolecules. We highlight how the surface properties of NPs impact their interactions with cells and in vivo compartments, especially focused on the important surface design parameters such as HD size, surface charge, and targeting. Typically, maximal cellular uptake can take place in the intermediate NP size range of 40-60nm. Clearance of NPs from blood circulation is largely dependent on the degree of uptake by reticuloendothelial system when they are larger than 10nm. When the HD size is below 10nm, NPs show broad distribution over many organs. Reduction of HD size below the limit of renal barrier can achieve fast clearance of NPs. For maximal tumor accumulation, NPs should have long blood circulation time and should be large enough to prevent rapid penetration. NPs are also desired to rapidly clear out from the body after the mission before they cause toxic side effects. However, efficient clearance from the body to avoid side effects may result in the reduction in residence time required for accumulation in target tissues. Smart design of NP surface coating that can meet the conflicting demands can open a new avenue of NP applications. Surface charge and hydrophobicity need to be carefully considered for NP surface design. Positively charged NPs more adsorb on cell membranes and consequently show higher level of internalizations when compared with negatively charged or neutral NPs. NPs encounter a large variety of biomolecules in vivo, where non-specific adsorptions can potentially alter the physicochemical properties of the NPs. For optimal performance, NPs are suggested to have neutral surface charge at physiological conditions, small HD size, and minimal non-specific adsorption levels. Zwitterionic NP surface coating by small surface ligands can be a promising approach. Toxicity is one of most critical issues, where proper control of the NP surface can significantly reduce the toxicities.


Asunto(s)
Ingeniería Química/métodos , Compuestos Inorgánicos/uso terapéutico , Imagen Molecular/métodos , Nanopartículas/uso terapéutico , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Inorgánicos/síntesis química , Metales/síntesis química , Nanopartículas/química , Polímeros/síntesis química , Propiedades de Superficie , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
14.
Langmuir ; 29(1): 441-7, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23214974

RESUMEN

Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Hidróxidos/química , Luz , Nanocompuestos/química , Puntos Cuánticos , Coloides/química , Estabilidad de Medicamentos , Luminiscencia , Microscopía Electrónica de Transmisión
15.
Chem Commun (Camb) ; 48(73): 9174-6, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22872047

RESUMEN

We report photoluminescence (PL) modulation of quantum dots (QDs) by photoinduced electron transfers from acridine-1,8-dione derivative surface ligands. Reversible PL switching upon many repeated cycles was demonstrated, as alternating on and off of the UV excitation for the surface ligand has successfully resulted in the QD PL modulation.


Asunto(s)
Acridinas/química , Sustancias Luminiscentes/química , Puntos Cuánticos , Transporte de Electrón , Luminiscencia , Mediciones Luminiscentes
16.
J Phys Chem Lett ; 3(23): 3442-7, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-26290970

RESUMEN

Two different quantum dots (QDs) with an identical optical band gap were prepared: one without the inorganic shell and short surface ligands (BQD) and the other with thick inorganic shells and long surface ligands (OQD). They were surface-derivatized to be positively or negatively charged and were used for layer-by-layer assemblies on TiO2. By sandwiching BQD between OQD and TiO2, OQD photoluminescence showed seven times faster decay, which is attributed to the combined effect of the efficient energy transfer from OQD to BQD with the FRET efficiency of 86% and fast electron transfer from BQD to TiO2 with the rate of 1.2 × 10(9) s(-1). The QD bilayer configuration was further applied to solar cells, and showed 3.6 times larger photocurrent and 3.8 times larger photoconversion efficiency than those of the device with the OQD being sandwiched by BQD and TiO2. This showcases the importance of sophisticated control of QD layer assembly for the design of efficient QD solar cells.

17.
Chem Commun (Camb) ; 47(28): 8022-4, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21660354

RESUMEN

A new multiplexed NIR in vivo imaging is showcased by using quantum dots and NaYF(4):Yb(3+),Tm(3+) nanoparticles. The 'temporal' multiplexing is demonstrated by alternating the excitation wavelengths and unmixing the emissions of different probes. Multiplexed cellular imaging and the cellular trafficking in animal models are shown.


Asunto(s)
Fluoruros/química , Rayos Infrarrojos , Imagen Molecular/métodos , Puntos Cuánticos , Tulio/química , Iterbio/química , Itrio/química , Animales , Células HeLa , Humanos , Ratones
18.
Mol Imaging Biol ; 13(3): 471-480, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20567924

RESUMEN

PURPOSE: Researchers have been studying the mechanisms by which metastasis can be prevented via blocking the hematogenous and the lymphatic routes for a long time now. However, metastasis is still the single most challenging obstacle for successful cancer management. In a new twist that may require some retooling of this established approach, we investigated the hypothesis that tumor metastases can occur via an independent fluid-conducting system called the primo-vascular system. PROCEDURES: The dissemination and growth of near-infrared quantum dot (NIR QD)-electroporated cancer cells in metastatic sites were investigated using in vivo multispectral imaging techniques. RESULTS: Our results show that the NIR QD-labeled cancer cells were able to migrate through not only the blood vascular and lymphatic systems but also the primo-vascular system extending from around the tumor to inside the abdominal cavity. Furthermore, the NIR QD-labeled cancer cells, which had been seeded intraperitoneally, specifically infiltrated the primo-vascular system in the omentum and in the gonadal fat. CONCLUSIONS: These findings strongly suggest that the primo-vascular system may be an additional metastasis route, complementing the lymphatic and hematogenous routes, which facilitate the dissemination and colonization of cancer cells at secondary sites.


Asunto(s)
Diagnóstico por Imagen/métodos , Metástasis de la Neoplasia , Neoplasias/irrigación sanguínea , Neoplasias/patología , Especificidad de Órganos , Animales , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Electroporación , Femenino , Gónadas/patología , Humanos , Vasos Linfáticos/patología , Ratones , Ratones Desnudos , Epiplón/patología , Neoplasias Ováricas/patología , Puntos Cuánticos , Tejido Subcutáneo/patología , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Chemphyschem ; 10(9-10): 1466-70, 2009 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-19514031

RESUMEN

True colors: High-quality InP and InP/ZnS quantum dots (QDs) are obtained by means of a simple one-pot method in the presence of polyethylene glycol (PEG). Rapid and size-controlled reactions lead to highly crystalline and nearly monodisperse QDs at relatively low temperatures. The particles emit from cyan blue to far-red, and are successfully used in cellular imaging (see figure).


Asunto(s)
Indio/química , Fosfinas/química , Puntos Cuánticos , Sulfuros/química , Compuestos de Zinc/química , Línea Celular Tumoral , Células HeLa , Humanos , Microscopía Fluorescente , Nanopartículas/química , Polietilenglicoles/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...