Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5797, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987236

RESUMEN

The basal structure of the bacterial flagellum includes a membrane embedded MS-ring (formed by multiple copies of FliF) and a cytoplasmic C-ring (composed of proteins FliG, FliM and FliN). The SRP-type GTPase FlhF is required for directing the initial flagellar protein FliF to the cell pole, but the mechanisms are unclear. Here, we show that FlhF anchors developing flagellar structures to the polar landmark protein HubP/FimV, thereby restricting their formation to the cell pole. Specifically, the GTPase domain of FlhF interacts with HubP, while a structured domain at the N-terminus of FlhF binds to FliG. FlhF-bound FliG subsequently engages with the MS-ring protein FliF. Thus, the interaction of FlhF with HubP and FliG recruits a FliF-FliG complex to the cell pole. In addition, the modulation of FlhF activity by the MinD-type ATPase FlhG controls the interaction of FliG with FliM-FliN, thereby regulating the progression of flagellar assembly at the pole.


Asunto(s)
Proteínas Bacterianas , Flagelos , Flagelos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Proteica , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de la Membrana
2.
J Exp Bot ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989593

RESUMEN

In the chloroplast, the 54 kDa subunit of the signal recognition particle (cpSRP54) is involved in the posttranslational transport of the light-harvesting chlorophyll a/b-binding proteins (LHCPs) and the cotranslational transport of plastid-encoded subunits of the photosynthetic complexes to the thylakoid membrane. It forms a high-affinity complex with plastid-specific cpSRP43 for posttranslational transport, while a ribosome-associated pool coordinates its cotranslational function. CpSRP54 constitutes a conserved multidomain protein, comprising a GTPase (NG) and a methionine-rich (M) domain linked by a flexible region. It is further characterized by a plastid-specific C-terminal tail region containing the cpSRP43-binding motif. To characterize the physiological role of the various regions of cpSRP54 in thylakoid membrane protein transport, we generated Arabidopsis thaliana cpSRP54 knockout (ffc1-2) lines producing truncated cpSRP54 variants or a GTPase point mutation variant. Phenotypic characterization of the complementation lines demonstrated that the C-terminal tail region of cpSRP54 plays an important role exclusively in posttranslational LHCP transport. Furthermore, we show that the GTPase activity of cpSRP54 plays an essential role in the transport pathways for both nuclear- as well as plastid-encoded proteins. In addition, our data revealed that plants expressing cpSRP54 without the C-terminal region exhibit a strongly increased accumulation of a photosystem I assembly intermediate.

3.
bioRxiv ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39005358

RESUMEN

Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs. This has led to the proposition that self-assembly may instead vary neutrally within protein families. The extent of such variation has been difficult to ascertain because quaternary structure has until recently been difficult to measure on large scales. Here, we employ mass photometry, phylogenetics, and structural biology to interrogate the evolution of homo-oligomeric assembly across the entire phylogeny of prokaryotic citrate synthases - an enzyme with a highly conserved function. We discover a menagerie of different assembly types that come and go over the course of evolution, including cases of parallel evolution and reversions from complex to simple assemblies. Functional experiments in vitro and in vivo indicate that evolutionary transitions between different assemblies do not strongly influence enzyme catalysis. Our work suggests that enzymes can wander relatively freely through a large space of possible assemblies and demonstrates the power of characterizing structure-function relationships across entire phylogenies.

4.
mBio ; 15(6): e0103924, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38757952

RESUMEN

Bacteria sense changes in their environment and transduce signals to adjust their cellular functions accordingly. For this purpose, bacteria employ various sensors feeding into multiple signal transduction pathways. Signal recognition by bacterial sensors is studied mainly in a few model organisms, but advances in genome sequencing and analysis offer new ways of exploring the sensory repertoire of many understudied organisms. The human gut is a natural target of this line of study: it is a nutrient-rich and dynamic environment and is home to thousands of bacterial species whose activities impact human health. Many gut commensals are also poorly studied compared to model organisms and are mainly known through their genome sequences. To begin exploring the signals human gut commensals sense and respond to, we have designed a framework that enables the identification of sensory domains, prediction of signals that they recognize, and experimental verification of these predictions. We validate this framework's functionality by systematically identifying amino acid sensors in selected bacterial genomes and metagenomes, characterizing their amino acid binding properties, and demonstrating their signal transduction potential.IMPORTANCESignal transduction is a central process governing how bacteria sense and respond to their environment. The human gut is a complex environment with many living organisms and fluctuating streams of nutrients. One gut inhabitant, Escherichia coli, is a model organism for studying signal transduction. However, E. coli is not representative of most gut microbes, and signaling pathways in the thousands of other organisms comprising the human gut microbiota remain poorly understood. This work provides a foundation for how to explore signals recognized by these organisms.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Genoma Bacteriano , Microbioma Gastrointestinal/fisiología , Humanos , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Transducción de Señal , Metagenoma
5.
J Extracell Vesicles ; 13(5): e12447, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766978

RESUMEN

The continuous emergence of multidrug-resistant bacterial pathogens poses a major global healthcare challenge, with Klebsiella pneumoniae being a prominent threat. We conducted a comprehensive study on K. pneumoniae's antibiotic resistance mechanisms, focusing on outer membrane vesicles (OMVs) and polymyxin, a last-resort antibiotic. Our research demonstrates that OMVs protect bacteria from polymyxins. OMVs derived from Polymyxin B (PB)-stressed K. pneumoniae exhibited heightened protective efficacy due to increased vesiculation, compared to OMVs from unstressed Klebsiella. OMVs also shield bacteria from different bacterial families. This was validated ex vivo and in vivo using precision cut lung slices (PCLS) and Galleria mellonella. In all models, OMVs protected K. pneumoniae from PB and reduced the associated stress response on protein level. We observed significant changes in the lipid composition of OMVs upon PB treatment, affecting their binding capacity to PB. The altered binding capacity of single OMVs from PB stressed K. pneumoniae could be linked to a reduction in the lipid A amount of their released vesicles. Although the amount of lipid A per vesicle is reduced, the overall increase in the number of vesicles results in an increased protection because the sum of lipid A and therefore PB binding sites have increased. This unravels the mechanism of the altered PB protective efficacy of OMVs from PB stressed K. pneumoniae compared to control OMVs. The lipid A-dependent protective effect against PB was confirmed in vitro using artificial vesicles. Moreover, artificial vesicles successfully protected Klebsiella from PB ex vivo and in vivo. The findings indicate that OMVs act as protective shields for bacteria by binding to polymyxins, effectively serving as decoys and preventing antibiotic interaction with the cell surface. Our findings provide valuable insights into the mechanisms underlying antibiotic cross-protection and offer potential avenues for the development of novel therapeutic interventions to address the escalating threat of multidrug-resistant bacterial infections.


Asunto(s)
Antibacterianos , Klebsiella pneumoniae , Polimixina B , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Animales , Polimixina B/farmacología , Membrana Externa Bacteriana/metabolismo , Polimixinas/farmacología , Vesículas Extracelulares/metabolismo , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/metabolismo , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos
6.
Nature ; 628(8009): 894-900, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600380

RESUMEN

Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2-4; however, so far, molecular assembly into fractals is restricted to synthetic systems5-12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpinski triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.


Asunto(s)
Citrato (si)-Sintasa , Evolución Molecular , Fractales , Multimerización de Proteína , Synechococcus , Microscopía por Crioelectrón , Modelos Moleculares , Synechococcus/enzimología , Citrato (si)-Sintasa/química , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/ultraestructura
7.
PLoS Biol ; 22(2): e3002508, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377076

RESUMEN

Peroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER). Exploring several of these proteins in fungal model systems, we observed that they can act as tethers bridging organelles together to create contact sites. We show that in Saccharomyces cerevisiae this mode of tethering involves the peroxisome import machinery, the ER-mitochondria encounter structure (ERMES) at mitochondria and the guided entry of tail-anchored proteins (GET) pathway at the ER. Our findings introduce a previously unexplored concept of how dual affinity proteins can regulate organelle attachment and communication.


Asunto(s)
Mitocondrias , Peroxisomas , Retículo Endoplásmico , Movimiento Celular , Respiración de la Célula , Saccharomyces cerevisiae
8.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 3): 53-58, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376823

RESUMEN

The GTPase FlhF, a signal recognition particle (SRP)-type enzyme, is pivotal for spatial-numerical control and bacterial flagella assembly across diverse species, including pathogens. This study presents the X-ray structure of FlhF in its GDP-bound state at a resolution of 2.28 Å. The structure exhibits the classical N- and G-domain fold, consistent with related SRP GTPases such as Ffh and FtsY. Comparative analysis with GTP-loaded FlhF elucidates the conformational changes associated with GTP hydrolysis. These topological reconfigurations are similarly evident in Ffh and FtsY, and play a pivotal role in regulating the functions of these hydrolases.


Asunto(s)
GTP Fosfohidrolasas , Partícula de Reconocimiento de Señal , GTP Fosfohidrolasas/química , Partícula de Reconocimiento de Señal/química , Proteínas Bacterianas/química , Cristalografía por Rayos X , Guanosina Trifosfato/química
9.
J Biol Chem ; 300(2): 105659, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237678

RESUMEN

Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.


Asunto(s)
Proteínas Bacterianas , Pseudomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas/enzimología
10.
Nat Commun ; 15(1): 318, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182620

RESUMEN

The transcriptional antisilencer VirB acts as a master regulator of virulence gene expression in the human pathogen Shigella flexneri. It binds DNA sequences (virS) upstream of VirB-dependent promoters and counteracts their silencing by the nucleoid-organizing protein H-NS. However, its precise mode of action remains unclear. Notably, VirB is not a classical transcription factor but related to ParB-type DNA-partitioning proteins, which have recently been recognized as DNA-sliding clamps using CTP binding and hydrolysis to control their DNA entry gate. Here, we show that VirB binds CTP, embraces DNA in a clamp-like fashion upon its CTP-dependent loading at virS sites and slides laterally on DNA after clamp closure. Mutations that prevent CTP-binding block VirB loading in vitro and abolish the formation of VirB nucleoprotein complexes as well as virulence gene expression in vivo. Thus, VirB represents a CTP-dependent molecular switch that uses a loading-and-sliding mechanism to control transcription during bacterial pathogenesis.


Asunto(s)
ADN , Shigella flexneri , Humanos , Shigella flexneri/genética , Virulencia/genética , Hidrólisis , Expresión Génica
11.
J Biol Chem ; 299(12): 105387, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890783

RESUMEN

The expression of virulence factors essential for the invasion of host cells by Salmonella enterica is tightly controlled by a network of transcription regulators. The AraC/XylS transcription factor HilD is the main integration point of environmental signals into this regulatory network, with many factors affecting HilD activity. Long-chain fatty acids, which are highly abundant throughout the host intestine, directly bind to and repress HilD, acting as environmental cues to coordinate virulence gene expression. The regulatory protein HilE also negatively regulates HilD activity, through a protein-protein interaction. Both of these regulators inhibit HilD dimerization, preventing HilD from binding to target DNA. We investigated the structural basis of these mechanisms of HilD repression. Long-chain fatty acids bind to a conserved pocket in HilD, in a comparable manner to that reported for other AraC/XylS regulators, whereas HilE forms a stable heterodimer with HilD by binding to the HilD dimerization interface. Our results highlight two distinct, mutually exclusive mechanisms by which HilD activity is repressed, which could be exploited for the development of new antivirulence leads.


Asunto(s)
Proteínas Bacterianas , Intestinos , Salmonella typhimurium , Proteínas Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica , Intestinos/metabolismo , Intestinos/microbiología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Virulencia , Animales , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología
12.
Nucleic Acids Res ; 51(17): 9452-9474, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37602373

RESUMEN

Prophages control their lifestyle to either be maintained within the host genome or enter the lytic cycle. Bacillus subtilis contains the SPß prophage whose lysogenic state depends on the MrpR (YopR) protein, a key component of the lysis-lysogeny decision system. Using a historic B. subtilis strain harboring the heat-sensitive SPß c2 mutant, we demonstrate that the lytic cycle of SPß c2 can be induced by heat due to a single nucleotide exchange in the mrpR gene, rendering the encoded MrpRG136E protein temperature-sensitive. Structural characterization revealed that MrpR is a DNA-binding protein resembling the overall fold of tyrosine recombinases. MrpR has lost its recombinase function and the G136E exchange impairs its higher-order structure and DNA binding activity. Genome-wide profiling of MrpR binding revealed its association with the previously identified SPbeta repeated element (SPBRE) in the SPß genome. MrpR functions as a master repressor of SPß that binds to this conserved element to maintain lysogeny. The heat-inducible excision of the SPß c2 mutant remains reliant on the serine recombinase SprA. A suppressor mutant analysis identified a previously unknown component of the lysis-lysogeny management system that is crucial for the induction of the lytic cycle of SPß.


Asunto(s)
Fagos de Bacillus , Bacteriófagos , Proteínas Virales , Fagos de Bacillus/genética , Bacillus subtilis/genética , Lisogenia/genética , Profagos/genética , Recombinasas/genética , Proteínas Virales/metabolismo
13.
Microlife ; 4: uqad031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426605

RESUMEN

The outer membrane (OM) protects Gram-negative bacteria from harsh environmental conditions and provides intrinsic resistance to many antimicrobial compounds. The asymmetric OM is characterized by phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. Previous reports suggested an involvement of the signaling nucleotide ppGpp in cell envelope homeostasis in Escherichia coli. Here, we investigated the effect of ppGpp on OM biosynthesis. We found that ppGpp inhibits the activity of LpxA, the first enzyme of LPS biosynthesis, in a fluorometric in vitro assay. Moreover, overproduction of LpxA resulted in elongated cells and shedding of outer membrane vesicles (OMVs) with altered LPS content. These effects were markedly stronger in a ppGpp-deficient background. We further show that RnhB, an RNase H isoenzyme, binds ppGpp, interacts with LpxA, and modulates its activity. Overall, our study uncovered new regulatory players in the early steps of LPS biosynthesis, an essential process with many implications in the physiology and susceptibility to antibiotics of Gram-negative commensals and pathogens.

14.
Cell Chem Biol ; 30(7): 766-779.e11, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37354906

RESUMEN

Inhibition of protein-protein interactions (PPIs) via designed peptides is an effective strategy to perturb their biological functions. The Elongin BC heterodimer (ELOB/C) binds to a BC-box motif and is essential for cancer cell growth. Here, we report a peptide that mimics the high-affinity BC-box of the PRC2-associated protein EPOP. This peptide tightly binds to the ELOB/C dimer (kD = 0.46 ± 0.02 nM) and blocks the association of ELOB/C with its interaction partners, both in vitro and in the cellular environment. Cancer cells treated with our peptide inhibitor showed decreased cell viability, increased apoptosis, and perturbed gene expression. Therefore, our work proposes that blocking the BC-box-binding pocket of ELOB/C is a feasible strategy to impair its function and inhibit cancer cell growth. Our peptide inhibitor promises novel mechanistic insights into the biological function of the ELOB/C dimer and offers a starting point for therapeutics linked to ELOB/C dysfunction.


Asunto(s)
Neoplasias , Factores de Transcripción , Elonguina/metabolismo , Factores de Transcripción/metabolismo , Unión Proteica , Péptidos/farmacología , Péptidos/metabolismo , Apoptosis , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias/tratamiento farmacológico
15.
Mol Plant Pathol ; 24(7): 768-787, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37171083

RESUMEN

Plant-pathogenic fungi are causative agents of the majority of plant diseases and can lead to severe crop loss in infected populations. Fungal colonization is achieved by combining different strategies, such as avoiding and counteracting the plant immune system and manipulating the host metabolome. Of major importance are virulence factors secreted by fungi, which fulfil diverse functions to support the infection process. Most of these proteins are highly specialized, with structural and biochemical information often absent. Here, we present the atomic structures of the cerato-platanin-like protein Cpl1 from Ustilago maydis and its homologue Uvi2 from Ustilago hordei. Both proteins adopt a double-Ψß-barrel architecture reminiscent of cerato-platanin proteins, a class so far not described in smut fungi. Our structure-function analysis shows that Cpl1 binds to soluble chitin fragments via two extended grooves at the dimer interface of the two monomer molecules. This carbohydrate-binding mode has not been observed previously and expands the repertoire of chitin-binding proteins. Cpl1 localizes to the cell wall of U. maydis and might synergize with cell wall-degrading and decorating proteins during maize infection. The architecture of Cpl1 harbouring four surface-exposed loop regions supports the idea that it might play a role in the spatial coordination of these proteins. While deletion of cpl1 has only mild effects on the virulence of U. maydis, a recent study showed that deletion of uvi2 strongly impairs U. hordei virulence. Our structural comparison between Cpl1 and Uvi2 reveals sequence variations in the loop regions that might explain a diverging function.


Asunto(s)
Plumbaginaceae , Ustilaginales , Ustilago , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ustilaginales/metabolismo , Enfermedades de las Plantas/microbiología , Hongos/metabolismo , Zea mays/microbiología
16.
Microlife ; 4: uqad016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223742

RESUMEN

Dinucleoside polyphosphates, a class of nucleotides found amongst all the Trees of Life, have been gathering a lot of attention in the past decades due to their putative role as cellular alarmones. In particular, diadenosine tetraphosphate (AP4A) has been widely studied in bacteria facing various environmental challenges and has been proposed to be important for ensuring cellular survivability through harsh conditions. Here, we discuss the current understanding of AP4A synthesis and degradation, protein targets, their molecular structure where possible, and insights into the molecular mechanisms of AP4A action and its physiological consequences. Lastly, we will briefly touch on what is known with regards to AP4A beyond the bacterial kingdom, given its increasing appearance in the eukaryotic world. Altogether, the notion that AP4A is a conserved second messenger in organisms ranging from bacteria to humans and is able to signal and modulate cellular stress regulation seems promising.

17.
Nat Ecol Evol ; 7(5): 756-767, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012377

RESUMEN

Highly specific interactions between proteins are a fundamental prerequisite for life, but how they evolve remains an unsolved problem. In particular, interactions between initially unrelated proteins require that they evolve matching surfaces. It is unclear whether such surface compatibilities can only be built by selection in small incremental steps, or whether they can also emerge fortuitously. Here, we used molecular phylogenetics, ancestral sequence reconstruction and biophysical characterization of resurrected proteins to retrace the evolution of an allosteric interaction between two proteins that act in the cyanobacterial photoprotection system. We show that this interaction between the orange carotenoid protein (OCP) and its unrelated regulator, the fluorescence recovery protein (FRP), evolved when a precursor of FRP was horizontally acquired by cyanobacteria. FRP's precursors could already interact with and regulate OCP even before these proteins first encountered each other in an ancestral cyanobacterium. The OCP-FRP interaction exploits an ancient dimer interface in OCP, which also predates the recruitment of FRP into the photoprotection system. Together, our work shows how evolution can fashion complex regulatory systems easily out of pre-existing components.


Asunto(s)
Proteínas Bacterianas , Cianobacterias , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianobacterias/fisiología , Carotenoides/metabolismo
18.
Nat Commun ; 14(1): 1698, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973244

RESUMEN

Hypusination is a unique post-translational modification of the eukaryotic translation factor 5A (eIF5A) that is essential for overcoming ribosome stalling at polyproline sequence stretches. The initial step of hypusination, the formation of deoxyhypusine, is catalyzed by deoxyhypusine synthase (DHS), however, the molecular details of the DHS-mediated reaction remained elusive. Recently, patient-derived variants of DHS and eIF5A have been linked to rare neurodevelopmental disorders. Here, we present the cryo-EM structure of the human eIF5A-DHS complex at 2.8 Å resolution and a crystal structure of DHS trapped in the key reaction transition state. Furthermore, we show that disease-associated DHS variants influence the complex formation and hypusination efficiency. Hence, our work dissects the molecular details of the deoxyhypusine synthesis reaction and reveals how clinically-relevant mutations affect this crucial cellular process.


Asunto(s)
Enfermedades Neurodegenerativas , Trastornos del Neurodesarrollo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Factores de Iniciación de Péptidos , Humanos , Microscopía por Crioelectrón , Factores de Iniciación de Péptidos/química , Procesamiento Proteico-Postraduccional , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Factor 5A Eucariótico de Iniciación de Traducción
19.
Mol Microbiol ; 119(4): 456-470, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36779383

RESUMEN

The major pathogen Staphylococcus aureus has to cope with host-derived oxidative stress to cause infections in humans. Here, we report that S. aureus tolerates high concentrations of hypothiocyanous acid (HOSCN), a key antimicrobial oxidant produced in the respiratory tract. We discovered that the flavoprotein disulfide reductase (FDR) MerA protects S. aureus from this oxidant by functioning as a HOSCN reductase, with its deletion sensitizing bacteria to HOSCN. Crystal structures of homodimeric MerA (2.4 Å) with a Cys43 -Cys48 intramolecular disulfide, and reduced MerACys43 S (1.6 Å) showed the FAD cofactor close to the active site, supporting that MerA functions as a group I FDR. MerA is controlled by the redox-sensitive repressor HypR, which we show to be oxidized to intermolecular disulfides under HOSCN stress, resulting in its inactivation and derepression of merA transcription to promote HOSCN tolerance. Our study highlights the HOSCN tolerance of S. aureus and characterizes the structure and function of MerA as a major HOSCN defense mechanism. Crippling the capacity to respond to HOSCN may be a novel strategy for treating S. aureus infections.


Asunto(s)
Oxidorreductasas , Staphylococcus aureus , Humanos , Disulfuros , Oxidantes , Oxidorreductasas/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo
20.
Microbiol Mol Biol Rev ; 87(1): e0004422, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36853029

RESUMEN

Nucleotides are at the heart of the most essential biological processes in the cell, be it as key protagonists in the dogma of molecular biology or by regulating multiple metabolic pathways. The dynamic nature of nucleotides, the cross talk between them, and their constant feedback to and from the cell's metabolic state position them as a hallmark of adaption toward environmental and growth challenges. It has become increasingly clear how the activity of RNA polymerase, the synthesis and maintenance of tRNAs, mRNA translation at all stages, and the biogenesis and assembly of ribosomes are fine-tuned by the pools of intracellular nucleotides. With all aspects composing protein synthesis involved, the ribosome emerges as the molecular hub in which many of these nucleotides encounter each other and regulate the state of the cell. In this review, we aim to highlight intracellular nucleotides in bacteria as dynamic characters permanently cross talking with each other and ultimately regulating protein synthesis at various stages in which the ribosome is mainly the principal character.


Asunto(s)
Nucleótidos , Biosíntesis de Proteínas , Nucleótidos/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Bacterias/genética , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA