Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Mol Biol Rep ; 51(1): 629, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717637

It has been rediscovered in the last fifteen years that B-cells play an active role in autoimmune etiology rather than just being spectators. The clinical success of B-cell depletion therapies (BCDTs) has contributed to this. BCDTs, including those that target CD20, CD19, and BAFF, were first developed to eradicate malignant B-cells. These days, they treat autoimmune conditions like multiple sclerosis and systemic lupus erythematosus. Particular surprises have resulted from the use of BCDTs in autoimmune diseases. For example, even in cases where BCDT is used to treat the condition, its effects on antibody-secreting plasma cells and antibody levels are restricted, even though these cells are regarded to play a detrimental pathogenic role in autoimmune diseases. In this Review, we provide an update on our knowledge of the biology of B-cells, examine the outcomes of clinical studies employing BCDT for autoimmune reasons, talk about potential explanations for the drug's mode of action, and make predictions about future approaches to targeting B-cells other than depletion.


Autoimmune Diseases , B-Lymphocytes , Lymphocyte Depletion , Humans , B-Lymphocytes/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Lymphocyte Depletion/methods , Antigens, CD20/immunology , Antigens, CD19/immunology , Animals , B-Cell Activating Factor/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/therapy
2.
Cell Biochem Biophys ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38750383

The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes' expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.

3.
J Appl Genet ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38753266

The Homeobox (HOX) gene family is essential to regulating cellular processes because it maintains the exact coordination required for tissue homeostasis, cellular differentiation, and embryonic development. The most distinctive feature of this class of genes is the presence of the highly conserved DNA region known as the homeobox, which is essential for controlling their regulatory activities. Important players in the intricate process of genetic regulation are the HOX genes. Many diseases, especially in the area of cancer, are linked to their aberrant functioning. Due to their distinctive functions in biomedical research-particularly in the complex process of tumor advancement-HOXA9 and HOXB9 have drawn particular attention. HOXA9 and HOXB9 are more significant than what is usually connected with HOX genes since they have roles in the intricate field of cancer and beyond embryonic processes. The framework for a focused study of the different effects of HOXA9 and HOXB9 in the context of tumor biology is established in this study.

4.
Microvasc Res ; 154: 104691, 2024 May 03.
Article En | MEDLINE | ID: mdl-38703993

Neoadjuvant targeting of tumor angiogenesis has been developed and approved for the treatment of malignant tumors. However, vascular disruption leads to tumor hypoxia, which exacerbates the treatment process and causes drug resistance. In addition, successful delivery of therapeutic agents and efficacy of radiotherapy require normal vascular networks and sufficient oxygen, which complete tumor vasculopathy hinders their efficacy. In view of this controversy, an optimal dose of FDA-approved anti-angiogenic agents and combination with other therapies, such as immunotherapy and the use of nanocarrier-mediated targeted therapy, could improve therapeutic regimens, reduce the need for administration of high doses of chemotherapeutic agents and subsequently reduce side effects. Here, we review the mechanism of anti-angiogenic agents, highlight the challenges of existing therapies, and present how the combination of immunotherapies and nanomedicine could improve angiogenesis-based tumor treatment.

5.
Cell Biochem Funct ; 42(4): e4029, 2024 Jun.
Article En | MEDLINE | ID: mdl-38773914

Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.


Exosomes , Mesenchymal Stem Cells , Receptors, Pattern Recognition , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Receptors, Pattern Recognition/metabolism , Animals , Immunomodulation
6.
Cell Biochem Biophys ; 2024 May 31.
Article En | MEDLINE | ID: mdl-38822204

The most prevalent inflammatory arthritis and a leading contributor to disability is rheumatoid arthritis (RA). Although it may not have arrived in Europe until the 17th century, it was present in early Native American communities several thousand years ago. Exosomes released by mesenchymal stem cells (MSCs) are highly immunomodulatory due to the origin of the cell. As a cell-free therapy, MSCs-exosomes are less toxic and elicit a weakened immune response than cell-based therapies. Exosomal noncoding RNAs (ncRNAs) are closely associated with a number of biological and functional facets of human health, especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Various exo-miRNAs and lncRNAs such as HAND2-AS1, miR-150-5p, miRNA-124a, and miR-320a lodged with MSC could be appropriate therapeutic ways for RA treatment. These MSC-derived exosomes affect RA disorders via different molecular pathways such as NFK-ß, MAPK, and Wnt. The purpose of this review is to review the research that has been conducted since 2020 so far in the field of RA disease treatment with MSC-loaded exo-miRNAs and exo-lncRNAs.

8.
Cell Biochem Funct ; 42(3): e4006, 2024 Apr.
Article En | MEDLINE | ID: mdl-38622913

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA (lncRNA) that is widely expressed in a variety of mammalian cell types. Altered expression levels of the lncRNA NEAT1 have been reported in liver-related disorders including cancer, fatty liver disease, liver fibrosis, viral hepatitis, and hepatic ischemia. lncRNA NEAT1 mostly acts as a competing endogenous RNA (ceRNA) to sponge various miRNAs (miRs) to regulate different functions. In regard to hepatic cancers, the elevated expression of NEAT1 has been reported to have a relation with the proliferation, migration, angiogenesis, apoptosis, as well as epithelial-mesenchymal transition (EMT) of cancer cells. Furthermore, NEAT1 upregulation has contributed to the pathogenesis of other liver diseases such as fibrosis. In this review, we summarize and discuss the molecular mechanisms by which NEAT1 contributes to liver-related disorders including acute liver failure, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, and liver carcinoma, providing novel insights and introducing NEAT1 as a potential therapeutic target in these diseases.


MicroRNAs , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , Animals , Humans , Cell Proliferation/genetics , Fibrosis , Liver Cirrhosis/genetics , Mammals/genetics , Mammals/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
9.
Pathol Res Pract ; 257: 155288, 2024 May.
Article En | MEDLINE | ID: mdl-38653088

Tumor-mediated immunosuppression is a fundamental obstacle to the development of dendritic cell (DC)-based cancer vaccines, which despite their ability to stimulate host anti-tumor CD8 T cell immunity, have not been able to generate meaningful therapeutic responses. Exosomes are inactive membrane vesicles that are nanoscale in size and are produced by the endocytic pathway. They are essential for intercellular communication. Additionally, DC-derived exosomes (DEXs) contained MHC class I/II (MHCI/II), which is frequently complexed with antigens and co-stimulatory molecules and is therefore able to prime CD4 and CD8 T cells that are specific to particular antigens. Indeed, vaccines with DEXs have been shown to exhibit better anti-tumor efficacy in eradicating tumors compared to DC vaccines in pre-clinical models of digestive system tumors. Also, there is room for improvement in the tumor antigenic peptide (TAA) selection process. DCs release highly targeted exosomes when the right antigenic peptide is chosen, which could aid in the creation of DEX-based antitumor vaccines that elicit more targeted immune responses. Coupled with their resistance to tumor immunosuppression, DEXs-based cancer vaccines have been heralded as the superior alternative cell-free therapeutic vaccines over DC vaccines to treat digestive system tumors. In this review, current studies of DEXs cancer vaccines as well as potential future directions will be deliberated.


Cancer Vaccines , Dendritic Cells , Exosomes , Exosomes/immunology , Humans , Dendritic Cells/immunology , Cancer Vaccines/therapeutic use , Cancer Vaccines/immunology , Digestive System Neoplasms/immunology , Digestive System Neoplasms/therapy , Digestive System Neoplasms/pathology , Animals , Immunotherapy/methods
10.
Pathol Res Pract ; 256: 155224, 2024 Apr.
Article En | MEDLINE | ID: mdl-38452584

Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.


MicroRNAs , RNA, Long Noncoding , Sepsis , Humans , Pyroptosis/physiology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics
11.
Pathol Res Pract ; 256: 155260, 2024 Apr.
Article En | MEDLINE | ID: mdl-38493726

Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-ß signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-ß regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-ß signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-ß receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-ß pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-ß signalling.


Arsenic , Environmental Pollutants , Lung Neoplasms , Metals, Heavy , Humans , Cadmium/analysis , Arsenic/toxicity , Arsenic/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Ecosystem , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Lung/metabolism
12.
Pathol Res Pract ; 256: 155259, 2024 Apr.
Article En | MEDLINE | ID: mdl-38503004

Circular RNAs (circRNAs) have been recognized as key components in the intricate regulatory network of the KRAS pathway across various cancers. The KRAS pathway, a central signalling cascade crucial in tumorigenesis, has gained substantial emphasis as a possible therapeutic target. CircRNAs, a subgroup of non-coding RNAs known for their closed circular arrangement, play diverse roles in gene regulation, contributing to the intricate landscape of cancer biology. This review consolidates existing knowledge on circRNAs within the framework of the KRAS pathway, emphasizing their multifaceted functions in cancer progression. Notable circRNAs, such as Circ_GLG1 and circITGA7, have been identified as pivotal regulators in colorectal cancer (CRC), influencing KRAS expression and the Ras signaling pathway. Aside from their significance in gene regulation, circRNAs contribute to immune evasion, apoptosis, and drug tolerance within KRAS-driven cancers, adding complexity to the intricate interplay. While our comprehension of circRNAs in the KRAS pathway is evolving, challenges such as the diverse landscape of KRAS mutant tumors and the necessity for synergistic combination therapies persist. Integrating cutting-edge technologies, including deep learning-based prediction methods, holds the potential for unveiling disease-associated circRNAs and identifying novel therapeutic targets. Sustained research efforts are crucial to comprehensively unravel the molecular mechanisms governing the intricate interplay between circRNAs and the KRAS pathway, offering insights that could potentially revolutionize cancer diagnostics and treatment strategies.


Neoplasms , RNA, Circular , Humans , RNA, Circular/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Neoplasms/genetics , Neoplastic Processes
13.
Pathol Res Pract ; 256: 155261, 2024 Apr.
Article En | MEDLINE | ID: mdl-38518733

Through their ability to modify the tumor microenvironment and cancer cells, macrophages play a crucial role in the promotion of tumorigenesis, development of tumors and metastasis, and chemotherapy resistance. A growing body of research has indicated that exosomes may be essential for coordinating the communication between cancer cells and macrophages. One type of extracellular vehicle called an exosome is utilized for delivering a variety of molecules, such as proteins, lipids, and nucleic acids, to specific cells in order to produce pleiotropic effects. Exosomes derived from macrophages exhibit heterogeneity across various cancer types and function paradoxically, suppressing tumor growth while stimulating it, primarily through post-transcriptional control and protein phosphorylation regulation in the receiving cells. Exosomes released by various macrophage phenotypes offer a variety of therapeutic alternatives in the interim. We outlined the most recent developments in this article, including our understanding of the roles that mechanisms and macrophage-derived exosomal biogenesis play in mediating the progression of cancer and their possible therapeutic uses.


Exosomes , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Exosomes/metabolism , Neoplasms/pathology , Macrophages/pathology , Cell Proliferation , Tumor Microenvironment/genetics
14.
Pathol Res Pract ; 256: 155257, 2024 Apr.
Article En | MEDLINE | ID: mdl-38537524

Circular RNAs (circRNAs) constitute a recently identified category of closed continuous loop RNA transcripts, serving as a subset of competing endogenous RNAs (ceRNAs) with the capacity to modulate genes by acting as microRNA sponges. In the context of cancer growth, numerous investigations have explored the potential functions of circRNAs, revealing their diverse functions either as oncogenes, promoting cancer progression, or as tumor suppressors, mitigating disease development. Among these, circRNA ADAM9 (Circ-ADAM9) is now recognized as an important player in a variety of mechanisms, both physiological and pathological, especially in cancer. The aberrant expression of Circ-ADAM9 has been observed across multiple human malignancies, implying a significant involvement in tumorigenesis. This comprehensive review aims to synthesize recent findings elucidating the function of Circ-ADAM9 in many malignancies. Additionally, the review explores the possibility of Circ-ADAM9 as a valuable biomarker, offering insights into its prognostic, diagnostic, and therapeutic implications. By summarizing the latest discoveries in this field, the review contributes to our understanding of the multifaceted contribution of Circ-ADAM9 in tumor biology and its potential applications in clinical settings.


MicroRNAs , Neoplasms , Humans , RNA, Circular/genetics , Neoplasms/genetics , MicroRNAs/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Membrane Proteins/genetics , ADAM Proteins
15.
Pathol Res Pract ; 255: 155173, 2024 Mar.
Article En | MEDLINE | ID: mdl-38364649

The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.


Environmental Pollutants , Gastrointestinal Microbiome , Metals, Heavy , Pesticides , Animals , Humans , Gastrointestinal Microbiome/physiology , Ecosystem , Environmental Pollutants/toxicity , Metals, Heavy/toxicity , Pesticides/toxicity
17.
J Ophthalmic Inflamm Infect ; 13(1): 25, 2023 May 16.
Article En | MEDLINE | ID: mdl-37193928

BACKGROUND: Sympathetic ophthalmia is a rare disease that can present as bilateral granulomatous uveitis after a penetrating trauma or surgery in one eye. FINDINGS: We report a case of a 47-year-old male with history of decreased vision in the right eye, six months after sustaining severe chemical injury in the left eye. He was diagnosed with sympathetic ophthalmia and was treated with corticosteroids and long-term immunosuppressive therapy, leading to complete resolution of intraocular inflammation. Final visual acuity was 20/30 at one year of follow up. CONCLUSIONS: Sympathetic Ophthalmia following chemical ocular burns is extremely uncommon. It can present as a diagnostic and therapeutic challenge. It warrants early diagnosis and management.

18.
Ocul Immunol Inflamm ; 30(7-8): 2043-2046, 2022.
Article En | MEDLINE | ID: mdl-34283664

BACKGROUND: Postpartum fungal endogenous endophthalmitis is an extremely rare condition, particularly in young healthy women. It can lead to permanent vision loss. FINDINGS: We report a case of a 26-year-old lactating mother with a history of decreased vision in her right eye after a normal vaginal delivery. She was diagnosed with endogenous endophthalmitis caused by a very rare fungus, Candida ciferrii, on vitreous biopsy, 2 months after the initial presentation. After vitrectomy, she was treated with oral antifungal therapy and, subsequently, her visual acuity improved to 20/30 with quiet eye after 6 months of follow-up. CONCLUSION: Postpartum fungal endogenous endophthalmitis can present as a diagnostic and therapeutic challenge. It warrants early diagnosis and management.


Health Status , Lactation , Female , Humans , Adult
19.
Oman J Ophthalmol ; 15(3): 411-412, 2022.
Article En | MEDLINE | ID: mdl-36760934
20.
Int J Gynecol Cancer ; 31(6): 835-839, 2021 06.
Article En | MEDLINE | ID: mdl-33975860

OBJECTIVE: To prospectively analyze the effect of three-dimensional chemoradiation on the bone mineral density of pelvic bones and its association with low back pain and disability in patients with locally advanced cervical cancer. METHODS: In biopsy proven locally advanced cervical cancer patients, bone mineral density and T scores for lumbar vertebrae 5, dorsal thoracic vertebrae 12, and T scores for the femoral neck were analyzed. Low back pain was scored using the visual analog scale while disability scoring was done using the Oswestry low back pain disability scale. Furthermore, a subgroup analysis for patients (classified according to menopausal status) was performed. RESULTS: In total, 106 patients were analyzed. A statistically significant decline in mean bone mineral density was observed at all three sites (vertebrae 5 and 12, and the femoral neck) post-chemoradiation therapy compared with pretreatment bone mineral density (0.671 vs 0.828, -2.083 vs -1.531, -2.503 vs -1.626; all p<0.001). Similarly, in subgroup analyses, at all three sites, pre-menopausal patients showed a statistically significant association (0.876 vs 0.697, -1.203 vs -0.2.761, -1.403 vs -2.232; all p<0.001) while a non-significant association was observed for post-menopausal patients at vertebrae 12 (-1.707 vs -1.719; p=0.09) with a statistically significant association at vertebrae 5 and the femoral neck (0.803 vs 0.656, -1.746 vs -2.648; p<0.01). Although statistically significant low back pain and disability scores were observed overall and irrespective of menopausal status, no correlation between bone mineral density and low back pain and disability was observed. CONCLUSION: Pelvic bone mineral density decreases significantly after chemoradiation, irrespective of menopausal status. However, no correlation with low back pain and disability was observed. Pelvic bone mineral density analysis should be considered before chemoradiation in cervical cancer.


Bone Density/drug effects , Chemoradiotherapy/methods , Low Back Pain/drug therapy , Uterine Cervical Neoplasms/complications , Adult , Female , Humans , Male , Middle Aged , Prospective Studies , Uterine Cervical Neoplasms/drug therapy
...