Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791462

RESUMEN

Small interfering RNA (siRNA) has significant potential as a treatment for cancer by targeting specific genes or molecular pathways involved in cancer development and progression. The addition of siRNA to other therapeutic strategies, like photodynamic therapy (PDT), can enhance the anticancer effects, providing synergistic benefits. Nevertheless, the effective delivery of siRNA into target cells remains an obstacle in cancer therapy. Herein, supramolecular nanoparticles were fabricated via the co-assembly of natural histone and hyaluronic acid for the co-delivery of HMGB1-siRNA and the photosensitizer chlorin e6 (Ce6) into the MCF-7 cell. The produced siRNA-Ce6 nanoparticles (siRNA-Ce6 NPs) have a spherical morphology and exhibit uniform distribution. In vitro experiments demonstrate that the siRNA-Ce6 NPs display good biocompatibility, enhanced cellular uptake, and improved cytotoxicity. These outcomes indicate that the nanoparticles constructed by the co-assembly of histone and hyaluronic acid hold enormous promise as a means of siRNA and photosensitizer co-delivery towards synergetic therapy.


Asunto(s)
Histonas , Ácido Hialurónico , Nanopartículas , Fármacos Fotosensibilizantes , ARN Interferente Pequeño , Ácido Hialurónico/química , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Nanopartículas/química , Histonas/metabolismo , Células MCF-7 , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Clorofilidas , Supervivencia Celular/efectos de los fármacos
2.
Small ; 19(45): e2304675, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37433983

RESUMEN

Therapeutic peptides have attracted increasing attention as anti-fibrotic drug candidates. However, the rapid degradation and insufficient liver accumulation of therapeutic peptides have seriously hampered their clinical translation. Here, the use of supramolecular nanoarchitectonics is reported to fabricate nanodrugs from therapeutic peptides for treating liver fibrosis. Self-assembling antagonist peptides are rationally designed and manipulated into uniform peptide nanoparticles with well-defined nanostructures and uniform sizes. Significantly, the peptide nanoparticles show enhanced accumulation in liver sites and limited distribution in other tissues. In vivo results show that the peptide nanoparticles exhibit greatly enhanced anti-fibrotic activity compared to the pristine antagonist along with good biocompatibility. These results indicate that self-assembly is a promising nanoarchitectonics approach to enhance the anti-fibrotic activity of therapeutic peptides for treating liver fibrosis.


Asunto(s)
Nanopartículas , Nanoestructuras , Humanos , Péptidos/química , Nanoestructuras/química , Nanopartículas/química , Cirrosis Hepática/tratamiento farmacológico
3.
Biomed Pharmacother ; 151: 113175, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35623172

RESUMEN

Micelles have been extensively investigated as drug delivery systems for loading of antitumor drugs with the advantages of good dispersibility, controllable size distribution, and high loading capacity. However, phagocytic clearance by the mononuclear phagocyte system remains a major impediment that inhibits blood circulation and thus tumor accumulation of micelles. Inspired by the antiphagocytic properties of ß2-microglobulin (ß2M), here we developed a ß2M-derived peptide for the surface functionalization of micelles. A ß2M-derived sequence was integrated with a matrix metalloproteinase-2 (MMP-2) cleavable sequence and then modified on the surface of poly(ethylene glycol)-b-poly(caprolactone) (PEG-PCL) micelles, endowing the micelles with both antiphagocytic and MMP-2-responsive properties. Compared to pristine PEG-PCL micelles, micelles modified with the dual-functional peptide exhibited higher inhibition of phagocytosis by macrophages in the absence of MMP-2, and enhanced internalization by tumor-associated macrophages in the presence of MMP-2, leading to enhanced tumor accumulation of the loaded photosensitizer, thus enabling antitumor therapy. These results demonstrated that antiphagocytic peptides derived from endogenous proteins are promising for functionalization of micelles in smart drug delivery.


Asunto(s)
Antineoplásicos , Micelas , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Metaloproteinasa 2 de la Matriz , Poliésteres/química , Polietilenglicoles/química
4.
Pharmaceutics ; 14(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35335884

RESUMEN

Lung cancer is the second-most common cancer and has the highest mortality among all cancer types. Nanoparticle (NP) drug delivery systems have been used to improve the therapeutic effectiveness of lung cancer, but rapid clearance and poor targeting limit their clinical utility. Here, we developed a nanomicelle-microsphere composite, in which doxorubicin (DOX) was loaded with spermine (Spm) modified poly (ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) micelles, and then the nanomicelles were noncovalently adsorbed on the surface of poly (lactic-co-glycolic acid) (PLGA) microspheres. The attachment was confirmed by scanning electron microscopy and confocal microscopy. In vitro cell experiments, MTT assays and intracellular uptake assays were used to demonstrate the cytotoxicity and the cellular uptake of micelles in A549 cells. In vivo biodistribution studies were conducted, an orthotopic lung cancer implantation model based on C57BL/6 mice was established, and then real-time fluorescence imaging analysis was used to study the targeted efficacy of the complex. A nanomicelle-microsphere composite was successively constructed. Moreover, Spm-modified micelles significantly enhanced cytotoxicity and displayed more efficient cellular uptake. Notably, an orthotopic lung cancer implantation model based on C57BL/6 mice was also successively established, and in vivo biodistribution studies confirmed that the complex greatly improved the distribution of DOX in the lungs and displayed notable tumor targeting. These results suggested that the nanomicelle-microsphere composite has potential application prospects in the targeted treatment of lung cancer.

5.
Small Methods ; 6(4): e2101359, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35142112

RESUMEN

Endogenic pigments derived from hemoglobin have been successfully applied in the clinic for both imaging and therapy based on their inherent photophysical and photochemical properties, including light absorption, fluorescence emission, and producing reactive oxygen species. However, the clinically approved endogenic pigments can be excited only by UV/vis light, restricting the penetration depth of in vivo applications. Recently, endogenic pigments with NIR-absorbing properties have been explored for constructing functional nanomaterials. Here, the overview of NIR-absorbing endogenic pigments, mainly bile pigments, and melanins, as emerging building blocks for supramolecular construction of diagnostic and therapeutic nanomaterials is provided. The endogenic origins, synthetic pathways, and structural characteristics of the NIR-absorbing endogenic pigments are described. The self-assembling approaches and noncovalent interactions in fabricating the nanomaterials are emphasized. Since bile pigments and melanins are inherently photothermal agents, the resulting nanomaterials are demonstrated as promising candidates for photoacoustic imaging and photothermal therapy. Integration of additional diagnostic and therapeutic agents by the nanomaterials through chemical conjugation or physical encapsulation toward synergetic effects is also included. Especially, the degradation behaviors of the nanomaterials in biological environments are summarized. Along with the challenges, future perspectives are discussed for accelerating the ration design and clinical translation of NIR-absorbing nanomaterials.


Asunto(s)
Melaninas , Nanoestructuras , Pigmentos Biliares , Nanoestructuras/uso terapéutico , Fototerapia , Nanomedicina Teranóstica/métodos
6.
Clin Cosmet Investig Dermatol ; 15: 2949-2956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605452

RESUMEN

Psoriasis is an immune-mediated chronic inflammatory dermatosis influenced by hereditary and environmental factors. Human immunodeficiency virus (HIV) infection affects the immune system and exacerbates psoriatic lesions. We report the case of a 33-year-old male patient diagnosed with psoriasis vulgaris, psoriatic arthritis and HIV infection. Acitretin capsules, etanercept and high-active antiretroviral therapy (HAART) were effective. Two months after etanercept was discontinued, his condition worsened. After switching to secukinumab combined with HAART, the symptoms of psoriatic arthritis resolved rapidly after four weeks, with a Disease Activity Index for Psoriatic Arthritis score of 0. The time to achieve psoriasis area and severity index 40, 75, 90, and 100 were 2, 4, 8, and 29 weeks. The treatment was maintained for 1 year with no adverse reactions. Regarding the stable CD4+ T lymphocyte count and the viral load, administering anti-IL-17 monoclonal antibodies is an effective treatment option for psoriasis patients.

7.
Curr Drug Targets ; 22(8): 922-946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33461465

RESUMEN

Nano-drug delivery systems (Nano-DDS) offer powerful advantages in drug delivery and targeted therapy for diseases. Compared to the traditional drug formulations, Nano-DDS can increase solubility, biocompatibility, and reduce off-targeted side effects of free drugs. However, they still have some disadvantages that pose a limitation in reaching their full potential in clinical use. Protein adsorption in blood, activation of the complement system, and subsequent sequestration by the mononuclear phagocyte system (MPS) consequently result in nanoparticles (NPs) to be rapidly cleared from circulation. Therefore, NPs have low drug delivery efficiency. So, it is important to develop stealth NPs for reducing bio-nano interaction. In this review, we first conclude the interaction between NPs and biological environments, such as blood proteins and MPS, and factors influencing each other. Next, we will summarize the new strategies to reduce NPs protein adsorption and uptake by the MPS based on current knowledge of the bio-nano interaction. Further directions will also be highlighted for the development of biomimetic stealth nano-delivery systems by combining targeted strategies for a better therapeutic effect.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Preparaciones Farmacéuticas , Humanos , Proteínas
8.
Photodiagnosis Photodyn Ther ; 31: 101807, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32404298

RESUMEN

Lung cancer is a severe disease with high mortality. Chemotherapy is one major treatment for lung cancer. However, systemic chemotherapeutics usually distribute throughout the body without specific lung distribution so that serious side effects are unavoidable. Photodynamic therapy (PDT) is occasionally used for lung cancer treatment but photosensitizers are also systemically administered and the bronchoscopic intervention under anesthesia may hurt lung tissues. Here, we combined inhaled chemotherapeutics and photosensitizers for chemo-photodynamic therapy (CPDT) of primary lung cancer of rats with external laser light irradiation. Gefitinib PLGA nanoparticles (GNPs) were prepared. The anti-cancer effects of GNPs and/or a common photosensitizer 5-aminolevulinic acid (5-ALA) were explored on A549 cells (adenocarcinomic human alveolar basal epithelial cells) and primary lung cancer rats after intratracheal administration. External light irradiation was applied due to its higher safety compared to internal light irradiation that may result in injuries after a laser optic fiber was intubated into the lung. The remarkable synergistic effect of CPDT was confirmed although the single therapies were also effective, where the high anti-lung cancer effects were shown and some typical lung cancer markers, including CD31, VEGF, NF-κB p65 and Bcl-2, significantly decreased. Moreover, the treatments attenuated inflammation with the downregulation of TNF-α. The combination of pulmonary drug delivery and chemo-photodynamic therapy is a promising strategy for treatment of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Ácido Aminolevulínico/uso terapéutico , Animales , Línea Celular Tumoral , Gefitinib/uso terapéutico , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ratas
9.
Eur J Pharm Sci ; 149: 105352, 2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32315772

RESUMEN

Oral gefitinib tablets are widely applied for the treatment of non-small cell lung cancer (NSCLC) though its broad distribution in the body may result in weak therapeutic efficiency and undesired side effects. Here, liposomal gefitinib dry powder inhalers (LGDs) were prepared using the injection-lyophilization method. LGDs were rough porous particles under a scanning electron microscope, which can be rapidly rehydrated to liposomes. LGDs and gefitinib powders were separately intratracheally (i.t.) administered into the lungs of primary lung cancer rats, while powdered gefitinib tablets were orally administered. Gefitinib was rapidly absorbed from the lung after i.t. administration of LGDs. The maximal gefitinib concentration in the circulation and the area under curve (AUC) of i.t. LGDs were higher than those of i.t. gefitinib powders and oral gefitinib. More importantly, much higher concentration and longer retention of gefitinib in the lung were shown after i.t. administration of LGDs and gefitinib powders but remarkably less drug distribution in the liver compared to oral gefitinib. LGDs showed higher therapeutic effect on rat primary lung cancer than i.t. gefitinib powders and oral gefitinib with reduction of inflammation, weak lung injury, and high apoptosis. Combination of inhalation and liposomes of anticancer drugs is a promising strategy for treatment of primary lung cancer.

10.
Eur J Pharm Biopharm ; 147: 87-101, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31899369

RESUMEN

In recent decades, targeted drug delivery systems (TDDS) have been widely used as an ideal method of improving therapeutic effects and reducing systemic side effects of chemotherapeutic agents. Historically, a handful of methods have been developed to further improve the targeting ability of delivery systems. Thus, in this study, two methods, taking advantage of tumor characteristics, were used for the creation of a multi-targeted delivery system. The first was the fabrication of pH-sensitive micelles, lending the ability to increase drug release by exploiting the acidic tumor environment. The second method was through utilization of the surface-exposed phosphatidylserine (PS) of tumors, which is normally found in the inner leaflet in healthy cells. Using PS as a target site, PS binding peptide (PSBP-6) was conjugated to pH-sensitive mixed micelles, (consisting of poly (ethylene glycol)-b-poly (D, L-lactide) (PEG-PDLLA) and poly (ethylene glycol)-b-poly (L-histidine) (PEG-PHIS)). After successful preparation of micelles, paclitaxel (PTX), a common chemotherapeutic agent, was selected to measure drug loading capacity and encapsulation efficiency, showing 7.9% and 83.5%, respectively. The in vitro release of PTX from mixed micelles at pH 5.0, 6.5, and 7.4 was 78.1, 56.8, and 51.4%, respectively, indicating acid-triggered drug release. The PSBP-6-modified, mixed micelles exhibited significantly enhanced in vitro cytotoxicity and demonstrated more efficient cellular uptake compared to unmodified mixed micelles in the HeLa cell line. Moreover, pharmacokinetic, in vivo biodistribution, and fluorescence imaging studies showed that PSBP-6-PEG-PDLLA/PEG-PHIS mixed micelles provide prolonged time in blood circulation and enhanced tumor accumulation. These results suggest that the use of PS as a novel targeting site is advantageous, and that these new multi-targeted mixed micelles show great potential for realization of broad prospects in the targeted treatment of tumors for chemotherapeutic delivery.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Paclitaxel/administración & dosificación , Fosfatidilserinas/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacocinética , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Ratones , Micelas , Paclitaxel/farmacocinética , Péptidos/química , Polímeros/química , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Curr Drug Metab ; 20(10): 815-834, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31580248

RESUMEN

BACKGROUND: Target-homing drug delivery systems are now gaining significant attention for use as novel therapeutic approaches in antitumor targeting for cancer therapy. Numerous targeted drug delivery systems have been designed to improve the targeting effects because these systems can display a range of favorable properties, thus, providing suitable characteristics for clinical applicability of anticancer drugs, such as increasing the solubility, and improving the drug distribution at target sites. The majority of these targeting systems are designed with respect to differences between cancerous and normal tissues, for instance, the low pH of tumor tissues or overexpressed receptors on tumor cell membranes. Due to the growing number of targeting possibilities, it is important to know the tumor-specific recognition strategies for designing novel, targeted, drug delivery systems. Herein, we identify and summarize literature pertaining to various recognition sites for optimizing the design of targeted drug delivery systems to augment current chemotherapeutic approaches. OBJECTIVE: This review focuses on the identification of the recognition sites for developing targeted drug delivery systems for use in cancer therapeutics. METHODS: We have reviewed and compiled cancer-specific recognition sites and their abnormal characteristics within tumor tissues (low pH, high glutathione, targetable receptors, etc.), tumor cells (receptor overexpression or tumor cell membrane changes) and tumor cell organelles (nuclear and endoplasmic reticular dysregulation) utilizing existing scientific literature. Moreover, we have highlighted the design of some targeted drug delivery systems that can be used as homing tools for these recognition sites. RESULTS AND CONCLUSION: Targeted drug delivery systems are a promising therapeutic approach for tumor chemotherapy. Additional research focused on finding novel recognition sites, and subsequent development of targeting moieties for use with drug delivery systems will aid in the evaluation and clinical application of new and improved chemotherapeutics.


Asunto(s)
Sistemas de Liberación de Medicamentos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Animales , Humanos , Neoplasias/metabolismo , Orgánulos
12.
Sensors (Basel) ; 17(4)2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28441754

RESUMEN

Remote sensing images could provide us with tremendous quantities of large-scale information. Noise artifacts (stripes), however, made the images inappropriate for vitalization and batch process. An effective restoration method would make images ready for further analysis. In this paper, a new method is proposed to correct the stripes and bad abnormal pixels in charge-coupled device (CCD) linear array images. The method involved a line tracing method, limiting the location of noise to a rectangular region, and corrected abnormal pixels with the Lagrange polynomial algorithm. The proposed detection and restoration method were applied to Gaofen-1 satellite (GF-1) images, and the performance of this method was evaluated by omission ratio and false detection ratio, which reached 0.6% and 0%, respectively. This method saved 55.9% of the time, compared with traditional method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...