Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(21): 8586-8593, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728058

RESUMEN

Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.


Asunto(s)
Compuestos de Boro , Técnicas Electroquímicas , Mediciones Luminiscentes , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/sangre , Compuestos de Boro/química , Técnicas Biosensibles/métodos , alfa-Sinucleína/análisis , alfa-Sinucleína/sangre , Protoporfirinas/química , Aptámeros de Nucleótidos/química , Límite de Detección
2.
J Sep Sci ; 47(5): e2300746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38471966

RESUMEN

In this work, monodisperse and nano-porous poly(bismaleimide-co-divinylbenzene) microspheres with large specific surface area (427.6 m2 /g) and rich pore structure were prepared by one-pot self-stable precipitation polymerization of 2,2'-bis[4-(4-maleimidophenoxy) phenyl] propane and divinylbenzene. The prepared poly(bismaleimide-co-divinylbenzene) microspheres were employed as dispersive solid-phase extraction (DSPE) adsorbent for the extraction of triazine herbicides. Under optimized conditions, good linearities were obtained between the peak area and the concentration of triazine herbicides in the range of 1-400 µg/L (R2 ≥ 0.9987) with the limits of detection of 0.12-0.31 µg/L. Triazine herbicides were detected using the described approach in vegetable samples (i.e., cucumber, tomato, and maize) with recoveries of 93.6%-117.3% and relative standard deviations of 0.4%-3.5%. In addition, the recoveries of triazine herbicides remained above 80.7% after being used for nine DSPE cycles, showing excellent reusability of poly(bismaleimide-co-divinylbenzene) microspheres. The adsorption of poly(bismaleimide-co-divinylbenzene) microspheres toward triazine herbicides was a monolayer and chemical adsorption. The adsorption mechanism between triazine herbicides and adsorbents might be a combination of hydrogen bonding, electrostatic interaction, and π-π conjugation. The results confirmed the potential use of the poly(bismaleimide-co-divinylbenzene) microspheres-based DSPE coupled to the high-performance liquid chromatography method for the detection of triazine herbicide residues in vegetable samples.


Asunto(s)
Herbicidas , Verduras , Compuestos de Vinilo , Verduras/química , Cromatografía Líquida de Alta Presión/métodos , Microesferas , Porosidad , Triazinas/análisis , Extracción en Fase Sólida/métodos , Herbicidas/análisis , Límite de Detección
3.
Analyst ; 149(2): 426-434, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099364

RESUMEN

Nowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated via in situ reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl2) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride. Then, the influence of protons on the ECL response of BET was studied in detail to obtain stronger ECL emission using potassium persulfate (K2S2O8) as co-reactant in aqueous environment. As a result, a 1.47-fold ECL efficiency enlargement of BET/K2S2O8 was harvested at the Pd@MOFs/GCE, where Ru(bpy)32+ behaved as a standard. Based on the fact that the ECL signals of the BET-covered Pd@MOFs modified glassy carbon electrode (simplified as BET/Pd@MOFs/GCE) can be quenched by Cu2+, the as-built ECL sensor showed a wide linear range (1.0-100.0 pM) and a limit of detection (LOD) as low as 0.12 pM. Hence, such research offers huge potential to promote the development of organic emitters in ECL biosensors and environmental monitoring.

4.
J Chromatogr A ; 1692: 463854, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36780847

RESUMEN

In this work, ß-cyclodextrin-functionalized magnetic graphene oxide (NiFe2O4@GO@ß-CD) was synthesized and employed as magnetic solid-phase extraction adsorbent for the extraction of bisphenols before high performance liquid chromatography analysis. The modification of ß-cyclodextrin could enhance the adsorption performance of NiFe2O4@GO@ß-CD towards bisphenols through the host-guest interaction and hydrogen-bond interaction. Under the optimal conditions, good linearities between peak area and concentration of bisphenols (1 - 300 µg L-1, r ≥ 0.9989) were obtained with the limits of detection (S/N = 3) in the range of 0.050 - 0.10 µg L-1. The recoveries of bisphenols in milk and milk packaging ranged from 78.0% to 101.6%. Moreover, NiFe2O4@GO@ß-CD showed stable chemical properties and good reusability with the recoveries of bisphenols remained above 80.0% after 12 MSPE cycles. The adsorption characteristics of NiFe2O4@GO@ß-CD towards bisphenols fitted well with the pseudo-second-order kinetic model and Langmuir model. The hydrogen-bond interaction, π-π interaction, host-guest interaction and electrostatic interaction between sorbent and bisphenols played important role during the adsorption process. The developed method showed potential applications for the analysis of trace bisphenols in milk and milk packaging.


Asunto(s)
Grafito , beta-Ciclodextrinas , Animales , Leche/química , Grafito/química , Adsorción , Fenómenos Magnéticos , beta-Ciclodextrinas/química , Hidrógeno/análisis , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA