Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e28303, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38560694

RESUMEN

The construction of gas extraction boreholes in soft coal seams is prone to collapse and deformation, and grouting reinforcement is one of the main methods to solve the problem of efficient sealing. However, the reasonable selection of key grouting parameters still needs further research. In response to the problem of selecting grouting sealing parameters for gas drainage drilling in soft coal seams, based on the "concentric ring" reinforcement sealing technology obtained in previous research, the key parameters and sealing technology of the "concentric ring" reinforcement were studied through theoretical calculation and numerical simulation experiments. The slurry diffusion morphology and range under different grouting pressures and grouting time slurry viscosity were obtained. Finally, in order to explore the application effect of key grouting parameters, on-site industrial tests were conducted in a soft and high gas coal seam. The research results indicate that the optimal grouting pressure for the "retaining wall rock hole ring" should not be less than 3 MPa, the reasonable grouting time should be 10-15 min, and the water material ratio of the grouting material should be greater than 1:1; The use of new reinforcement sealing and grouting technology can ensure long-term good extraction effect. Compared to the testing of drilling sealing effect using ordinary cloth bags with two plugs and one injection, The adoption of new reinforcement sealing technology can effectively prevent the deformation and collapse of the borehole before sealing, and due to two rounds of grouting and pre reinforcement of fractured coal, the sealing effect of the borehole is also relatively good. The research results have important theoretical value for guiding the drilling and sealing grouting engineering of gas extraction in soft coal seams.

2.
Helicobacter ; 28(5): e13001, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37334992

RESUMEN

BACKGROUND: It has been documented that Helicobacter hepaticus produces a nickel-containing hydrogen-oxidizing hydrogenase enzyme, which is necessary for hydrogen-supported amino acid uptake. Although H. hepaticus infection has been shown to promote liver inflammation and fibrosis in BALB/c mice, the impact of hydrogenase on the progression of liver fibrosis induced by H. hepaticus has not been explored. MATERIALS AND METHODS: BALB/c mice were inoculated with hydrogenase mutant (ΔHyaB) or wild type (WT) H. hepaticus 3B1 for 12 and 24 weeks. H. hepaticus colonization, hepatic histopathology, serum biochemistry, expression of inflammatory cytokines, and oxidative stress signaling pathways were detected. RESULTS: We found that ΔHyaB had no influence on the colonization of H. hepaticus in the liver of mice at 12 and 24 weeks post infection (WPI). However, mice infected by ΔHyaB strains developed significantly alleviated liver inflammation and fibrosis compared with WT infection. Moreover, ΔHyaB infection remarkably increased the expression of hepatic GSH, SOD, and GSH-Px, and decreased the liver levels of MDA, ALT, and AST compared to WT H. hepaticus infected group from 12 to 24 WPI. Furthermore, mRNA levels of Il-6, Tnf-α, iNos, Hmox-1, and α-SMA were significantly decreased with an increase of Nfe2l2 in the liver of mice infected by ΔHyaB strains. In addition, ΔHyaB H. hepaticus restored the activation of the Nrf2/HO-1 signaling pathway, which is inhibited by H. hepaticus infection. CONCLUSIONS: These data demonstrated that H. hepaticus hydrogenase promoted liver inflammation and fibrosis development mediated by oxidative stress in male BALB/c mice.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Hidrogenasas , Masculino , Animales , Ratones , Helicobacter hepaticus/genética , Hidrogenasas/genética , Hidrogenasas/metabolismo , Ratones Endogámicos BALB C , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado/patología , Fibrosis , Estrés Oxidativo , Hidrógeno/metabolismo
3.
ACS Omega ; 8(15): 14197-14207, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091375

RESUMEN

To study the dynamic evolution law of the oxidation heating process of coal spontaneous combustion in the goaf during the advancing process of the working face, a dynamic model of oxidation heating of coal spontaneous combustion in the goaf was established on the basis of deformed geometry. Through numerical simulation research, the evolution and migration laws of seepage field, oxygen concentration field, temperature field, and high-temperature area of coal spontaneous combustion in the goaf during the advancement of the working face was obtained. The results indicate that the distribution of the bulking coefficient, porosity, and permeability of the falling coal and rock mass in the goaf is nonuniform. They are relatively large in the area near the working face and the inlet and return airway and remain relatively unchanged with the advancement of the working face, but they are constantly decreasing in the location of the gob in the middle and deep. The oxygen concentration in the goaf presents an asymmetrical distribution. The oxygen concentration distribution area on the inlet side is wider than that on the return air side. At the same depth of the goaf, the oxygen concentration gradually decreases from the inlet side to the return air side; after the advancement distance exceeds 200 m, the air leakage in the goaf basically disappears, and the oxygen concentration decreases to zero. The high-temperature area of coal spontaneous combustion oxidation in the goaf was mainly concentrated on the air inlet side and extended toward the return air side. The advancing speed has a significant effect on the oxidation heating process of coal spontaneous combustion in the dynamic goaf. Under the same propulsion distance, when the advancing speed is 6 m/day, the highest temperature in the goaf is about 40 °C, and when the advancing speed is 2 m/day, the highest temperature in the goaf is as high as 120 °C. The smaller the advancing speed, the higher the heating rate of the goaf and the closer the high-temperature area to the working surface. The higher the advancing speed, the lower the temperature of the high-temperature point of the goaf and the greater the depth of the high-temperature point of the high temperature area; when the advancing speed is 2 m/day, the highest temperature point in the goaf is 70 m away from the working face, whereas when the advancing speed is 6 m/day, it reaches 174.6 m.

4.
ACS Omega ; 7(39): 34763-34769, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36211041

RESUMEN

The problems of lack of stability and difficult sealing of gas drainage boreholes in soft-coal seams directly affect the efficient extraction of gas in these soft-coal seams. After the holes are drilled, the collapsed holes lead to the failure to seal in time, which brings hidden dangers to mine production and causes time and economic waste. In this paper, the viscoelastic mechanics model is used to solve the force of the coal body in the fractured area of the orifice, combined with the theory of the external conditions affecting the collapse of the orifice of the soft-coal seam. The reason for the easy collapse of the borehole of the soft-coal seam is studied, and a reasonable solution is proposed. "Concentric ring" reinforced sealing technology, elaborated from the physical model, technical principles, and processes, was finally carried out in an on-site application test at the N2106 working face of a mining area in Shanxi. The results show that the fracture zone of the soft-coal seam easily enters a stage of rapid deformation under the effect of time. Its strong adsorption behavior, easy expansion, and other characteristics, combined with the violent disturbance of the drill pipe when the drilling is offset, eventually cause the hole to retreat, making it easy to deform and collapse afterward. The test boreholes reinforced and sealed with "concentric rings" have no problem of collapsed holes after retreating. The gas concentration remained above 30% in the first 30 days. The maximum gas purity of the borehole on the 30th day of extraction flow rate reached 0.053 m3/min. It is found that the sealing effect of the "concentric ring" reinforced seal drilling technology is better than that of the traditional sealing technology.

5.
Sci Rep ; 12(1): 7518, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525851

RESUMEN

Particle loss is an important cause of water inrush catastrophes in collapsed columns. In order to study the relationship between the lost particles of different graded rock samples and the pore structure of the subsidence column filling, experiments were designed and the changes of the seepage parameters of graded rock samples during the particle migration process under different permeable water pressures P and axial loads F were determined. The results show that: (1) There will be obvious collapse, silting and particle loss behaviors in the sample during different loading processes, and the rock samples with gradation values of n = 0.3 and n = 0.5 are dominant; (2) The relationship between porosity φ and bearing pressure The exponential function can be used to fit the loads F well, and the porosity decreases with the increase of the bearing load. The water surging characteristics before and after 1.2 MPa are mainly in the turbulent water gushing stage, accompanied by instantaneous slurry. Possibility of splashing and indenter sliding; (3) After infiltration, the condition of the remaining skeleton rock samples in the cylinder generally shows a trend of first decreasing rapidly, then increasing slowly, and then decreasing; (4) The gradation value n of the sample and the bottom There is a good correlation between the damaged area and the mean value S of the maximum area of the top water inrush channel. The maximum area increase of the damaged area and the maximum area increase of the water inrush channel show an opposite trend. The permeable pores of the graded samples can be divided into There are three situations of digging and collapse, water inrush gap and scouring hole, and the pore seepage process can be divided into 4 stages of inoculation of water seepage, rapid adjustment, rapid scour and steady flow.

6.
ACS Omega ; 7(11): 9303-9309, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350316

RESUMEN

The instability and sealing difficulty confronted by gas drainage boreholes in a soft coal seam weakens the drainage efficiency. To address this problem, the instability characteristics of the sealing section of boreholes are investigated. On the basis of the findings of the mechanical properties of the borehole around the sealing section and in view of the physical and mechanical properties of the soft coal seam, a theoretical analysis was performed. A system consisting of the YYL200 electronic persistent creep test system and the DNS-200 electronic universal tester was used to observe the borehole under different filling conditions. The samples were subjected to a graded loading test, and the Kelvin-Voigt model was selected for parameter inversion and law analysis of the test results. The results show that the collapse of the broken area and the stress concentration and instability of the sealing section after the sealing of the soft coal seam are directly attributable to the instability of the soft coal seam and the sealing difficulty. The mechanical properties of the grouting sealing material are directly related to the loading of the hole-containing sample and dead load displacement. The maximal overall displacement of the sample in group B is close to 1.4 mm. The instantaneous deformation capacity and deformation space reflected by the generalized Kelvin model parameters E 1, E 2, and η are closely related to the mechanical properties of the filling material. The highly stress- and deformation-resistant sealing material can ensure the relative time-effect-based stability within the stress concentration area of the sealing section.

7.
Phys Rev Lett ; 95(26): 261601, 2005 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-16486337

RESUMEN

In the same sense that 5D anti-de Sitter space (AdS(5)) warped geometries arise naturally from type IIB string theory with stacks of D3 branes, AdS(7) warped geometries arise naturally from M theory with stacks of M5 branes. We compactify two spatial dimensions of AdS(7) to get AdS(5) x Sigma(2), where the metric for Sigma(2) inherits the same warp factor as appears in the AdS(5). We analyze the 5D spectrum in detail for the case of a bulk scalar or a graviton in AdS(5) x T(2), in a setup which mimics the first Randall-Sundrum model. The results display novel features which might be observed in experiments at the CERN Large Hadron Collider. For example, we obtain TeV scale string winding states without lowering the string scale. This is due to the double warping which is a generic feature of winding states along compactified AdS directions. Experimental verification of these signatures of AdS(7) could be interpreted as direct evidence for M theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA