Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 13(3): 354-360, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451171

RESUMEN

Side substitution is an effective way of functionalizing and modifying the properties of polyamides. Meanwhile, side substitution would significantly influence the crystallization kinetics and polymorphic phase transition of polyamides, which, however, has not been well elucidated. Herein, we synthesized the side-substituted long-chain polyamides with various content of methyl pendent groups and investigated their crystallization and phase transition behaviors. We find that the thermal parameters of side-substituted polyamides vary linearly with the side group content, analogous to the isomorphic crystallization of random copolymers. All the solution-crystallized polyamides experience the α-γ Brill transition during heating, with the Brill transition temperature linearly decreasing as the side group content increases. Intriguingly, the γ-α transition of polyamides during cooling is suppressed with the presence of side methyl groups due to the difficulty in H-bond reorganization and gauche-trans conformational changes. This work has demonstrated the critical role of side substitution in the polymorphic crystallization and phase transition of long-chain polyamides.

2.
Small ; 20(33): e2401261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38533971

RESUMEN

Hydrogels have emerged as promising candidates for anticounterfeiting materials, owing to their unique stimulus-responsive capabilities. To improve the security of encrypted information, efforts are devoted to constructing transient anticounterfeiting hydrogels with a dynamic information display. However, current studies to design such hydrogel materials inevitably include sophisticated chemistry, complex preparation processes, and particular experimental setups. Herein, a facile strategy is proposed to realize the transient anticounterfeiting by constructing bivalent metal (M2+)-coordination complexes in poly(acrylic acid) gels, where the cloud temperature (Tc) of the gels can be feasibly tuned by M2+ concentration. Therefore, the multi-Tc parts in the gel can be locally programmed by leveraging the spatially selective diffusion of M2+ with different concentrations. With the increase of temperature or the addition of a complexing agent, the transparency of the multi-Tc parts in the gel spontaneously evolves in natural light, enabling the transient information anticounterfeiting process. This work has provided a new strategy and mechanism to fabricate advanced anticounterfeiting hydrogel materials.

3.
Adv Mater ; 36(15): e2309568, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227221

RESUMEN

Phase-transformable ionic conductors (PTICs) show significant prospects for functional applications due to their reversible resistance switching property. However, the representative design principle of PTICs is utilizing the melt-crystallization transition of ionic liquids, and the resistance switching temperatures of such PTICs cannot be tuned as desired. Herein, a new strategy is proposed to design PTICs with on-demand resistance switching temperatures by using the melt-crystallization transition of polymer cocrystal phase, whose melting temperature shows a linear relationship with the polymer compositions. Owing to the melt of polymer cocrystal domains and the tunable migration of ions in the resistance switching region, the obtained PTICs display ultrahigh temperature sensitivity with a superior temperature coefficient of resistance of -8.50% °C-1 around human body temperature, as compared to various ionic conductors previously reported. Therefore, the PTICs can detect tiny temperature variation, allowing for the intelligent applications for overheating warning and heat dissipation. It is believed that this work may inspire future researches on the development of advanced soft electrical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA