Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Nanoscale ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887082

RESUMEN

The rise of two-dimensional (2D) materials has provided a confined geometry and yielded methods for guiding electrons at the nanoscale level. 2D material-enabled electronic devices can interact and transduce the subtle charge perturbation and permit significant advancement in molecule discrimination technology with high accuracy, sensitivity, and specificity, leaving a significant impact on disease diagnosis and health monitoring. However, high-performance biosensors with scalable fabrication ability and simple protocols have yet to be fully realized due to the challenges in wafer-scale 2D film synthesis and integration with electronics. Here, we propose a molybdenum oxide (MoOx)-interdigitated electrode (IDE)-based label-free biosensing chip, which stands out for its wafer-scale dimension, tunability, ease of integration and compatibility with the complementary metal-oxide-semiconductor (CMOS) fabrication. The device surface is biofunctionalized with monoclonal anti-carcinoembryonic antigen antibodies (anti-CEA) via the linkage agent (3-aminopropyl)triethoxysilane (APTES) for carcinoembryonic antigen (CEA) detection and is characterized step-by-step to reveal the working mechanism. A wide range and real-time response of the CEA concentration from 0.1 to 100 ng mL-1 and a low limit of detection (LOD) of 0.015 ng mL-1 were achieved, meeting the clinical requirements for cancer diagnosis and prognosis in serum. The MoOx-IDE biosensor also demonstrates strong surface affinity towards molecules and high selectivity using L-cysteine (L-Cys), glycine (Gly), glucose (Glu), bovine serum albumin (BSA), and immunoglobulin G (IgG). This study showcases a simple, scalable, and low-cost strategy to create a nanoelectronic biosensing platform to achieve high-performance cancer biomarker discrimination capabilities.

2.
Front Cardiovasc Med ; 11: 1364376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903969

RESUMEN

Left atrial appendage occluder (LAAO) dislodgement with embolization is a rare occurrence. If the LAAO migrates into the left atrium or ventricle, it can lead to acute heart failure or even death in a person, necessitating urgent surgical intervention. Currently, most cases of LAAO dislodgement are managed through open-heart surgery, while percutaneous retrieval of the LAAO has been reported only in a few cases with limited associated experience. This article reports a case of a patient in whom a migrated LACbes device was successfully retrieved using a catheter-based approach, demonstrating an innovative and minimally invasive treatment strategy.

3.
Ultrasonics ; 141: 107353, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788334

RESUMEN

Acoustic emission (AE) technology plays a crucial role in dynamic nondestructive testing. To investigate material properties, friction characteristics, damage features, and acoustic source localization, AE tests are commonly conducted on metal or composite plates. However, the reflection of AE waves at the boundary often generates strong interference, significantly impacting AE test results. In response to this challenge, this paper introduces an innovative solution: an additional Spiral Acoustic Black Hole (ASABH) affixed to the test plate's boundary. The ASABH is designed to mitigate the reflection of AE signals, enhancing the signal-to-noise ratio collected by the sensor. The study begins by establishing a finite element model of the ASABH to validate its efficacy in reducing boundary reflection waves. Subsequently, the paper explores the impact of structural geometric parameters-such as length, residual thickness, power exponent, pitch, and extended length-on the reduction effect. The investigation also delves into the variation of attenuation degree when connecting the ASABH to plates with different relative thickness, relative widths, and materials. Finally, the effectiveness of the ASABH in attenuating structural boundary reflection waves is verified through pencil-lead breaking tests conducted on both metal and composite plates. Results indicate that the proposed ASABH effectively mitigates the reflection of AE waves at the structural boundary, demonstrating adaptability and providing valuable insights for ASABH design.

4.
J Exp Clin Cancer Res ; 43(1): 116, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637831

RESUMEN

BACKGROUND: Protein arginine methyltransferase 6 (PRMT6) plays a crucial role in various pathophysiological processes and diseases. Glioblastoma (GBM; WHO Grade 4 glioma) is the most common and lethal primary brain tumor in adults, with a prognosis that is extremely poor, despite being less common than other systemic malignancies. Our current research finds PRMT6 upregulated in GBM, enhancing tumor malignancy. Yet, the specifics of PRMT6's regulatory processes and potential molecular mechanisms in GBM remain largely unexplored. METHODS: PRMT6's expression and prognostic significance in GBM were assessed using glioma public databases, immunohistochemistry (IHC), and immunoblotting. Scratch and Transwell assays examined GBM cell migration and invasion. Immunoblotting evaluated the expression of epithelial-mesenchymal transition (EMT) and Wnt-ß-catenin pathway-related proteins. Dual-luciferase reporter assays and ChIP-qPCR assessed the regulatory relationship between PRMT6 and YTHDF2. An in situ tumor model in nude mice evaluated in vivo conditions. RESULTS: Bioinformatics analysis indicates high expression of PRMT6 and YTHDF2 in GBM, correlating with poor prognosis. Functional experiments show PRMT6 and YTHDF2 promote GBM migration, invasion, and EMT. Mechanistic experiments reveal PRMT6 and CDK9 co-regulate YTHDF2 expression. YTHDF2 binds and promotes the degradation of negative regulators APC and GSK3ß mRNA of the Wnt-ß-catenin pathway, activating it and consequently enhancing GBM malignancy. CONCLUSIONS: Our results demonstrate the PRMT6-YTHDF2-Wnt-ß-Catenin axis promotes GBM migration, invasion, and EMT in vitro and in vivo, potentially serving as a therapeutic target for GBM.


Asunto(s)
Glioblastoma , Glioma , Animales , Ratones , Glioblastoma/patología , beta Catenina/genética , beta Catenina/metabolismo , Activación Transcripcional , Ratones Desnudos , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Glioma/patología , Vía de Señalización Wnt , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
5.
Entropy (Basel) ; 26(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38539712

RESUMEN

A shock wave is a flow phenomenon that needs to be considered in the development of high-speed aircraft and engines. The traditional computational fluid dynamics (CFD) method describes it from the perspective of macroscopic variables, such as the Mach number, pressure, density, and temperature. The thickness of the shock wave is close to the level of the molecular free path, and molecular motion has a strong influence on the shock wave. According to the analysis of the Chapman-Enskog approach, the nonequilibrium effect is the source term that causes the fluid system to deviate from the equilibrium state. The nonequilibrium effect can be used to obtain a description of the physical characteristics of shock waves that are different from the macroscopic variables. The basic idea of the nonequilibrium effect approach is to obtain the nonequilibrium moment of the molecular velocity distribution function by solving the Boltzmann-Bhatnagar-Gross-Krook (Boltzmann BGK) equations or multiple relaxation times Boltzmann (MRT-Boltzmann) equations and to explore the nonequilibrium effect near the shock wave from the molecular motion level. This article introduces the theory and understanding of the nonequilibrium effect approach and reviews the research progress of nonequilibrium behavior in shock-related flow phenomena. The role of nonequilibrium moments played on the macroscopic governing equations of fluids is discussed, the physical meaning of nonequilibrium moments is given from the perspective of molecular motion, and the relationship between nonequilibrium moments and equilibrium moments is analyzed. Studies on the nonequilibrium effects of shock problems, such as the Riemann problem, shock reflection, shock wave/boundary layer interaction, and detonation wave, are introduced. It reveals the nonequilibrium behavior of the shock wave from the mesoscopic level, which is different from the traditional macro perspective and shows the application potential of the mesoscopic kinetic approach of the nonequilibrium effect in the shock problem.

6.
Phytomedicine ; 128: 155557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547622

RESUMEN

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliales de la Vena Umbilical Humana , Óxido Nítrico Sintasa de Tipo III , Transducción de Señal , Trombospondina 1 , Animales , Humanos , Antraquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Masculino , Ratas , Ratones , Ratas Sprague-Dawley , Endotelio Vascular/efectos de los fármacos , Glucosa/metabolismo , Ratones Endogámicos C57BL
7.
Chemistry ; 30(30): e202400121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538538

RESUMEN

It is vital to develop highly efficient non-doped blue organic light-emitting diodes (OLEDs) with high color purity and low-efficiency roll-off for applications in display and lighting. Herein, two blue D-A fluorophores TPA-PO and TPA-DPO are designed and synthesized, in which phenanthro[9,10-d]oxazole (PO) acts as the acceptor and triphenylamine as the donor. TPA-PO and TPA-DPO display good thermal stability and efficient luminescence efficiency in neat film. Results based on photophysical property and theoretical calculation demonstrate that TPA-PO and TPA-DPO possess the hybridized local and charge-transfer (HLCT) feature, which can utilize the triplet exciton to achieve highly efficient electroluminance (EL). The non-doped OLEDs with TPA-PO/TPA-DPO as pure emissive layer show the uniform EL emission peak at 468 nm, corresponding to CIE coordinates of (0.168, 0.187) and (0.167, 0.167), respectively. The TPA-DPO-based non-doped OLEDs provide the maximum external quantum efficiency (EQE) of 7.99 % and high exciton utility efficiency of 48.4 %~72.6 %. Moreover, the TPA-DPO-based device exhibits low-efficiency roll-off, still maintaining the EQE of 6.03 % at the high luminance of 5000 cd m-2. Those findings state clearly that PO is a promising building block of blue fluorophore with a potential HLCT feature to be applied in non-doped OLEDs.

8.
Ultrasonics ; 138: 107260, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354525

RESUMEN

As an essential auxiliary tool for acoustic emission (AE) detection, waveguide rods are widely used in testing situations where sensors cannot contact the specimens directly, such as high temperature, cryogenic, corrosion, radiation, etc. However, the AE signal attenuation in waveguide rod makes the risk of missing weak acoustic emission events in damage detection, which limits the application of waveguide rods. Therefore, in this work, a novel waveguide rod was presented based on acoustic black hole (ABH) theory to enhance the AE signal before reaching the sensor through the energy convergence effect of the ABH. Firstly, the geometric configuration of the waveguide rod with ABH was designed. The AE signal enhancement effect of the ABH waveguide rod was verified by comparing the amplitude of the AE signal for the traditional waveguide rod and the ABH waveguide rod by the finite element method. Secondly, the influence on the geometric parameters of the ABH waveguide rod for the AE signal enhancement effect was analyzed. The selection method of geometric parameters and the enhancement method of the AE signal with specific frequency bands were proposed to obtain expected AE signal enhancement results. Finally, the pencil-lead breaking experiments were implemented to verify the effectiveness of finite element method and the AE signal enhancement effect of ABH waveguide rod. The results show that the waveguide rod with ABH given in this paper has a significant AE signal enhancement effect and a good application prospect in structural acoustic emission health monitoring.

9.
Zookeys ; 1190: 91-106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298407

RESUMEN

The adult, pupa and larva of a new species, Gnaptorina (Gnaptorina) lhorongica Li, sp. nov., from northeastern Xizang, China are described and illustrated. The species was identified using molecular phylogenetic analyses based on three mitochondrial fragments and one nuclear gene fragment (COI, Cytb, 16S, and 28S-D2). The taxonomic status of the new species is confirmed using a combination of molecular and morphological datasets. This study provides valuable molecular and morphological data for phylogenetic studies of the tribe Blaptini.

10.
OTO Open ; 8(1): e114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317783

RESUMEN

Objective: Albumin is considered to be a surrogate marker for inflammation and nutritional status. Levels usually decrease after surgery but little is known about the predictive value of preoperative albumin levels in patients undergoing thyroidectomy. This study aimed to investigate the 30-day incidence of postoperative outcomes in thyroidectomy patients with and without preoperative hypoalbuminemia. Study Design: Retrospective cohort study. Setting: TriNetX Database. Methods: TriNetX, a federated deidentified database, was retrospectively queried to identify patients who underwent thyroidectomy. Postoperative outcomes within 30 days of thyroidectomy, based on International Classification of Disease, 10th Revision and Current Procedural Terminology codes, in patients with preoperative hypoalbuminemia (≤3.4 g/dL) (cohort 1) were analyzed and compared to patients without hypoalbuminemia (cohort 2). Results: After propensity score matching, 2398 patients were identified in each cohort. Hypoalbuminemia patients were more likely to have postoperative pneumonia (odds ratio, OR: 3.472, 95% confidence interval, CI [2.016-5.978]), acute renal failure (OR: 3.872, 95% CI [2.412-6.217]), venous thromboembolism (OR: 1.766, 95% CI [1.016-2.819]), and surgical site infection (OR: 2.353, 95% CI [1.282-4.32]). Rates of recurrent laryngeal nerve injury were comparable between cohorts. Conclusion: Patients undergoing thyroidectomy with preoperative hypoalbuminemia have a higher prevalence of postoperative complications compared to patients without preoperative hypoalbuminemia. While not routinely assessed, preoperative evaluation of serum albumin levels may help guide expectations and optimal management of thyroidectomy patients.

12.
J Colloid Interface Sci ; 657: 482-490, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38070334

RESUMEN

Obtaining crystalline materials with high structural stability as well as super proton conductivity is a challenging task in the field of energy and material chemistry. Therefore, two highly stable metal-organic frameworks (MOFs) with macro-ring structures and carboxylate groups, Zr-TCPP (1) and Hf-TCPP (2) assembled from low-toxicity as well as highly coordination-capable Zr(IV)/Hf(IV) cations and the multifunctional linkage, meso-tetra(4-carboxyphenyl)porphine (TCPP) have attracted our strong interest. Note that TCPP as a large-size rigid ligand with high symmetry and multiple coordination sites contributes to the formation of the two stable MOFs. Moreover, the pores with large sizes in the two MOFs favor the entry of more guest water molecules and thus result in high H2O-assisted proton conductivity. First, their distinguished structural stabilities covering water, thermal and chemical stabilities were verified by various determination approaches. Second, the dependence of the proton conductivity of the two MOFs on temperature and relative humidity (RH) is explored in depth. Impressively, MOFs 1 and 2 demonstrated the optimal proton conductivities of 4.5 × 10-4 and 0.78 × 10-3 S·cm-1 at 100 °C/98 % RH, respectively. Logically, based on the structural information, gas adsorption/desorption features, and activation energy values, their proton conduction mechanism was deduced and highlighted.

13.
Food Funct ; 14(18): 8291-8308, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37602757

RESUMEN

Pterostilbene, an important analogue of the star molecule resveratrol and a novel compound naturally occurring in blueberries and grapes, exerts a significant neuroprotective effect on cerebral ischemia/reperfusion (I/R), but its mechanism is still unclear. This study aimed to follow the molecular mechanisms behind the potential protective effect of pterostilbene against I/R induced injury. For fulfilment of our aim, we investigated the protective effects of pterostilbene on I/R injury caused by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. Machine learning models and molecular docking were used for target exploration and validated by western blotting. Pterostilbene significantly reduced the cerebral infarction volume, improved neurological deficits, increased cerebral microcirculation and improved blood-brain barrier (BBB) leakage. Machine learning models confirmed that the stroke target MMP-9 bound to pterostilbene, and molecular docking demonstrated the strong binding activity. We further found that pterostilbene could depolymerize stress fibers and maintain the cytoskeleton by effectively increasing the expression of the non-phosphorylated actin depolymerizing factor (ADF) in the early stage of I/R. In the late stage of I/R, pterostilbene could activate the Wnt pathway and inhibit the expression of MMP-9 to decrease the degradation of the extracellular basement membrane (BM) and increase the expression of junction proteins. In this study, we explored the protective mechanisms of pterostilbene in terms of both endothelial cytoskeleton and extracellular matrix. The early and late protective effects jointly maintain BBB stability and attenuate I/R injury, showing its potential to be a promising drug candidate for the treatment of ischemic stroke.


Asunto(s)
Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Metaloproteinasa 9 de la Matriz/genética , Barrera Hematoencefálica , Simulación del Acoplamiento Molecular , Infarto Cerebral , Isquemia , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Membrana Basal
14.
Eur J Pharmacol ; 955: 175874, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37394029

RESUMEN

Vascular dementia (VD) is one of the most common causes of dementia, taking account for about 20% of all cases. Although studies have found that selenium supplementation can improve the cognitive ability of Alzheimer's patients, there is currently no research on the cognitive impairment caused by VD. This study aimed to investigate the role and mechanism of Amorphous selenium nanodots (A SeNDs) in the prevention of VD. The bilateral common carotid artery occlusion (BCCAO) method was used to establish a VD model. The neuroprotective effect of A SeNDs was evaluated by Morris water maze, Transcranial Doppler TCD, hematoxylin-eosin (HE) staining, Neuron-specific nuclear protein (Neu N) staining and Golgi staining. Detect the expression levels of oxidative stress and Calcium-calmodulin dependent protein kinase II (CaMK II), N-methyl-D-aspartate receptor subunit NR2A, and postsynaptic dense protein 95 (PSD95). Finally, measure the concentration of calcium ions in neuronal cells. The results showed that A SeNDs could significantly improve the learning and memory ability of VD rats, restore the posterior arterial blood flow of the brain, improve the neuronal morphology and dendritic remodeling of pyramidal cells in hippocampal CA1 area, reduce the level of oxidative stress in VD rats, increase the expression of NR2A, PSD95, CaMK II proteins and reduce intracellular calcium ion concentration, but the addition of selective NR2A antagonist NVP-AAMO77 eliminated these benefits. It suggests that A SeNDs may improve cognitive dysfunction in vascular dementia rats by regulating the NMDAR pathway.


Asunto(s)
Demencia Vascular , Selenio , Ratas , Animales , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/metabolismo , Selenio/farmacología , Selenio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Calcio/metabolismo , Estrés Oxidativo , Hipocampo , Neuronas/metabolismo , Aprendizaje por Laberinto
15.
Eur J Pharmacol ; 953: 175836, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329971

RESUMEN

Diabetic cardiomyopathy (DCM) is part of the most important causes of death from cardiovascular disease. Perillaldehyde (PAE), a major component of the herb perilla, has been shown to ameliorate doxorubicin-induced cardiotoxicity, but it is unclear whether PAE exerts beneficial effects on DCM. Exploring the potential molecular mechanisms of PAE for the treatment of DCM through network pharmacology and molecular docking. The SD rat type 1 diabetes model was established by a single intraperitoneal injection of streptozotocin (60 mg/kg), the cardiac function indexes of each group were detected by echocardiography; the morphological changes, apoptosis, protein expression of P-GSK-3ß (S9), collagen I (Col-Ⅰ), collagen III (Col-Ⅲ) and alpha-smooth muscle actin (α-SMA), and miR-133a-3p expression levels were detected. An DCM model of H9c2 cells was established in vitro and transfected with Mimic and Inhibitor of miR-133a-3p. The results showed that PAE ameliorated cardiac dysfunction, reduced fasting glucose and cardiac weight index, and improved myocardial injury and apoptosis in DCM rats. It reduced high glucose-induced apoptosis, promoted migration and improved mitochondrial division injury in H9c2 cells. PAE decreased P-GSK-3ß (S9), Col-Ⅰ, Col-Ⅲ and α-SMA protein expression and upregulated miR-133a-3p expression levels. After miR-133a-3p Inhibitor treatment, the expression of P-GSK-3ß (S9) and α-SMA expression were significantly increased; after miR-133a-3p Mimic treatment, the expression of P-GSK-3ß (S9) and α-SMA decreased significantly in H9c2 cells. It suggests that the mechanism of action of PAE to improve DCM may be related to the upregulation of miR-133a-3p and inhibition of P-GSK-3ß expression.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , MicroARNs , Ratas , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Apoptosis , Colágeno/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Glucosa/farmacología
16.
J Hazard Mater ; 451: 131184, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933506

RESUMEN

The adverse effects of NO2 on the environment and human health promote the development of high-performance gas sensors to address the need for monitoring. Two-dimensional (2D) metal chalcogenides have been considered an emerging group of NO2-sensitive materials, while incomplete recovery and low long-term stability are the two major hurdles for their practical implementation. The transformation into oxychalcogenides is an effective strategy to alleviate these drawbacks, but usually requires multiple-step synthesis and lacks controllability. Here, we prepare tailorable 2D p-type gallium oxyselenide with the thicknesses of 3-4 nm, through a single-step mechanochemical synthesis that combines the in-situ exfoliation and oxidation of bulk crystals. The optoelectronic NO2 sensing performances of such 2D gallium oxyselenide with different oxygen contents are investigated at room temperature, in which 2D GaSe0.58O0.42 exhibits the largest response magnitude of 82.2% towards 10 ppm NO2 at the irradiation of UV, with full reversibility, excellent selectivity, and long term stability for at least one month. Such overall performances are significantly improved over those of reported oxygen-incorporated metal chalcogenide-based NO2 sensors. This work provides a feasible approach to prepare 2D metal oxychalcogenides in a single-step manner and demonstrates their great potential for room-temperature fully reversible gas sensing.

17.
Sensors (Basel) ; 23(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36991954

RESUMEN

We propose an omnidirectional measurement method without blind spots by using a convex mirror, which in principle does not cause chromatic aberration, and by using vertical disparity by installing cameras at the top and bottom of the image. In recent years, there has been significant research in the fields of autonomous cars and robots. In these fields, three-dimensional measurements of the surrounding environment have become indispensable. Depth sensing with cameras is one of the most important sensors for recognizing the surrounding environment. Previous studies have attempted to measure a wide range of areas using fisheye and full spherical panoramic cameras. However, these approaches have limitations such as blind spots and the need for multiple cameras to measure all directions. Therefore, this paper describes a stereo camera system that uses a device capable of taking an omnidirectional image with a single shot, enabling omnidirectional measurement with only two cameras. This achievement was challenging to attain with conventional stereo cameras. The results of experiments confirmed an improvement in accuracy of up to 37.4% compared to previous studies. In addition, the system succeeded in generating depth image that can recognize distances in all directions in a single frame, demonstrating the possibility of omnidirectional measurement with two cameras.

18.
Kaohsiung J Med Sci ; 39(5): 511-521, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36744836

RESUMEN

Chronic wounds seriously affect the quality of life of the elderly, obese people, and diabetic patients. The excessive inflammatory response is a key driver of delayed chronic wound healing. Although lavender essential oil (EO [lav]) has been proven to have anti-inflammatory and accelerate wound curative effects, the specific molecular mechanism involved is still ambiguous. The results showed that the wounds treated with lipopolysaccharide (LPS) not only had delayed healing, but also the expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and the inflammatory mediator protein, high-mobility group box 1 protein (HMGB-1), in the wound tissues were significantly increased. However, treatment of LPS-induced chronic wounds with EO (lav) accelerated wound healing and decreased IL-1ß and HMGB-1 expression levels. It was further found that LPS induced macrophage pyroptosis to produce IL-1ß. After treatment with EO (lav), the expression level of macrophage pyroptosis marker Gasdermin D (GSDMD) and pyroptosis-related cytotoxic effects were significantly reduced. Immunofluorescence results also directly indicate that EO (lav) can protect macrophages from LPS-induced pyroptosis. Moreover, EO (lav) can down-regulate expression levels of IL-1ß, GSDMD, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the caspase-11-related pyroptotic signaling pathway. This study demonstrates that EO (lav) can reduce proinflammatory factor production and ameliorate inflammatory response by inhibiting macrophage pyroptosis, which accelerates LPS-induced chronic wound healing.


Asunto(s)
Caspasas , Lipopolisacáridos , Humanos , Anciano , Lipopolisacáridos/farmacología , Caspasas/metabolismo , Caspasas/farmacología , Piroptosis , Calidad de Vida , Macrófagos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacología
19.
J Chromatogr A ; 1692: 463850, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773400

RESUMEN

A novel 4 + 2 covalent magnetic organic framework (COF) with core-shell structure was synthesized for the first time with N, N, N', N'-Tetrakis (4-aminophenyl)-1, 4- benzenediamine (TPDA) and 2, 6-Pyridinedicarboxaldehyde (PCBA) at room temperature. The synthesized magnetic TPDA-PCBA-COF has a large specific surface area and superparamagnetism, which makes it an ideal sorbent for trace analytes enrichment. To this end, we combined it with magnetic solid phase extraction (MSPE) to enrich trace parabens in environmental water. The parameters affecting the enrichment efficiency of magnetic solid phase extraction, such as the amount of Fe3O4@TPDA-PCBA-COF, extraction time, pH of samples, salt concentration, desorption solvent volume and desorption time, were optimized. A simple method for extraction and determination of parabens in water samples by MSPE combined with high performance liquid chromatography (HPLC) was established under optimized conditions. The validation results revealed that the linear ranges were at 1.0-5.0 × 102 ng mL-1 with R value between 0.9915 and 0.9999, the spiked recoveries were in the range of 82.8% to 99.9% and RSDs were lower than 10%. The method was further applied to the determination of parabens in water samples, with recoveries in the range of 82.2% to 110.0% and RSDs ≤ 7.7%. These results suggest that the magnetic TPDA-PCBA-COF could be used as a promising adsorbent for efficient extraction and quantitation of parabens in environmental water samples.


Asunto(s)
Estructuras Metalorgánicas , Agua , Agua/química , Estructuras Metalorgánicas/química , Parabenos , Temperatura , Adsorción , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión , Fenómenos Magnéticos , Límite de Detección
20.
Anal Chim Acta ; 1239: 340615, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628698

RESUMEN

A novel porphyrin-based magnetic covalent organic framework (PCOF) was first reported by using a facile synthetic procedure. The Fe3O4@NH2@PCOF nanospheres were utilized to effectively extract personal care products in a wide polarity range (log Kow values from 1.96 to 7.60). The successful magnetic solid-phase extraction (MSPE) of target analytes could be ascribed to the sufficient oxygen-, nitrogen- and phenyl-containing functional groups of the COF layer, which are demonstrated to be of good compatibility with pollutants exhibiting different polarities by using molecular dynamics simulations, independent gradient model analysis and various characterizations. The MSPE extraction efficiency was enhanced by optimizing key parameters. The findings indicated that the method had a wide linearity range (1-500 ng mL-1 for parabens and UV filters) and low detection limits (0.4-0.9 ng mL-1 for parabens and 0.2-0.6 ng mL-1 for UV filters). The accuracy was reflected by recoveries ranging from 74% to 114%. Satisfactory intra- and inter-day precisions from 3.0% to 9.8% and 0.5%-9.1% were obtained. Overall, the proposed MSPE-HPLC method is accurate and reliable for identifying parabens as well as UV filters in wastewater and swimming pool water. The potential of the method for evaluating human exposure risk was unfolded.


Asunto(s)
Estructuras Metalorgánicas , Porfirinas , Humanos , Parabenos/análisis , Magnetismo/métodos , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión , Fenómenos Magnéticos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...