Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Redox Biol ; 72: 103137, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642502

The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.


Aurora Kinase A , Ferroptosis , Forkhead Box Protein M1 , Meningioma , NF-E2-Related Factor 2 , Piperazines , Ferroptosis/drug effects , Ferroptosis/genetics , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Meningioma/metabolism , Meningioma/genetics , Meningioma/pathology , Piperazines/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics
2.
J Mol Cell Biol ; 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37791390

Meningioma is one of the most common primary neoplasms in the central nervous system, whereas there is still no specific molecularly targeted therapy that has been approved for the clinical treatment of aggressive meningiomas. There is therefore an urgent demand to decrypt the biological and molecular landscape of malignant meningioma. Here, through the in-silica prescreening and 10-year follow-up of 445 meningioma patients, we uncovered that CBX7 is progressively decreased with malignancy grade and neoplasia stage in meningioma and a high CBX7 expression level predicts a favorable prognosis in meningioma patients. CBX7 restoration significantly induces cell cycle arrest and inhibits meningioma cell proliferation. iTRAQ-based proteomics analysis indicated that CBX7 restoration triggers the metabolic shift from glycolysis to oxidative phosphorylation. The mechanistic study demonstrated that CBX7 promotes the proteasome-dependent degradation of c-MYC proteins by transcriptionally inhibiting the expression of a c-MYC deubiquitinase, USP44, which attenuates c-MYC-mediated transactivation of LDHA transcripts and further inhibits glycolysis and subsequent cellular proliferation. More importantly, the functional role of CBX7 was further confirmed in both subcutaneous and orthotopic meningioma xenografts mouse models and human meningioma patients. Together, our results shed light on the critical role of CBX7 during meningioma malignancy progression and identified the CBX7/USP44/c-MYC/LDHA axis as a promising therapeutic target against meningioma progression.

3.
Front Oncol ; 13: 1133861, 2023.
Article En | MEDLINE | ID: mdl-36816938

Background: The treatment for giant pituitary adenomas (GPAs, maximal diameter >4 cm) remains challenging, with remarkable mortality and morbidity, and there is no consensus on the optimal surgical approach. Gross total resection (GTR) for GPAs is difficult to achieve through a single transsphenoidal or transcranial approach. Any residual tumor is at risk for postoperative apoplexy. In this study, we propose a new surgical technique for resecting the GPAs in a sing-stage transcranial surgery. Methods: A retrospective review of 4 patients with complicated GPAs, who had been treated via an endoscopic transcranial transdiaphragmatic approach in a single-stage surgery after routine transcranial resection, was performed. The following data was analyzed: clinical characteristics, preoperative imaging studies, resection rate, perioperative morbidity and mortality, as well as postoperative outcomes. Results: All patients had nonfunctioning GPAs and preoperative visual disturbances. In three patients, GTR was achieved, and in one patient, near-total resection (90%-100% of the tumor) was achieved. Three patients attained improved postoperative visual function, while one patient's vision remained unchanged. One patient suffered a deficiency in adrenocorticotropic hormone along with thyroid-stimulating hormone, and one patient developed diabetes insipidus. Notably, none of the patients suffered cerebrospinal fluid leakage. However, one patient developed an epidural hematoma and underwent decompressive craniectomy. Conclusions: The endoscopic transcranial transdiaphragmatic approach in a single-stage surgery can be efficiently and safely performed for maximal excision of GPAs with extensive suprasellar extension. Furthermore, relative to the conventional combined or staged approaches, this innovative surgical strategy provides neurosurgeons with a clear operative field with reduced invasiveness.

4.
Acad Radiol ; 30(11): 2469-2476, 2023 Nov.
Article En | MEDLINE | ID: mdl-36697269

RATIONALE AND OBJECTIVES: The measurement of the time since stroke onset (TSS) is crucial for decision-making in the treatment of acute ischemic stroke (AIS). This study assessed the utility of computed tomography angiography (CTA) radiomics features (RFs) to estimate TSS. MATERIALS AND METHODS: A total of 221 patients with AIS were enrolled in this retrospective study and were divided into a training group (n = 154) and a test group (n = 67). Thrombi in CTA images were manually outlined using ITK-SNAP. Images were aligned, normalized, and pre-processed to extract RFs. The TSS was calculated as the time from stroke onset to CTA completion. The patients were classified into two groups according to estimated TSS: ≤4.5 and >4.5 hours. A total of 944 RFs were extracted from CTA images. Clinical factors associated with TSS were identified using multivariate logistic regression, and a combined model (clinical data and RFs) was constructed. The predictive value of the models was assessed by the area under the receiver operating characteristic curve (AUC). The performance of the models was compared using the DeLong test, and clinical utility was evaluated by decision curve analysis. RESULTS: The AUC of the radiomics model was 0.803 (95% confidence interval [CI]: 0.733-0.873) and 0.803 (95% CI: 0.698-0.908) in the training and test cohorts, respectively. The AUC of the combined model (containing data on age, diabetes, and atrial fibrillation) in the training and test sets was 0.813 (95% CI: 0.750-0.889) and 0.803 (95% CI: 0.699-0.907), respectively. The DeLong test showed no significant difference between the radiomics and combined models. Decision curve analysis showed that both models had clinical utility. CONCLUSION: CTA-based thrombus radiomics can estimate TSS in patients with AIS. The addition of clinical data to the model does not improve predictive performance.

5.
J Neurooncol ; 161(2): 193-202, 2023 Jan.
Article En | MEDLINE | ID: mdl-35612696

OBJECTIVE: To evaluate the clinicopathological characteristics, radiology, and long-term outcomes of microcystic meningiomas (MM) and compare it with other subtypes of meningiomas managed at a single neurosurgical center. METHODS: A total of 87 consecutive patients who underwent surgical resection and were diagnosed as MM between 2005 and 2016 were enrolled for analysis. Clinicopathological, radiology, and prognostic information was collected and analyzed. Progression free survival (PFS) was compared with 659 patients with other subtypes of WHO grade 1 meningiomas and 167 patients with atypical meningiomas treated during the same period. RESULTS: Fifty six females and 31 males with MM were analyzed. Peri-tumor brain edema was frequent on T2 WI (85%).12 patients (13.8%) experienced tumor progression during the mean follow-up of 101.66 ± 40.92 months. The median PFS was unavailable, and the 5, 10, and 15 year progression-free rates were 96.9%, 84.0%, and 73.9%, respectively. Univariate COX analysis demonstrated skull base location and higher Ki-67 index as significant negative prognostic factors for PFS (P < 0.05); multivariate analysis identified tumor location and Ki-67 index as independent factors (P < 0.01), as well. Of note, the PFS of MM was worse than other WHO grade 1 subtypes (P < 0.001), but better than atypical meningiomas (P < 0.001), and the PFS differences were retained even when the analysis was limited to the patients receiving GTR (P < 0.05). CONCLUSION: The PFS of MM was worse than other WHO grade 1 subtypes and better than atypical meningiomas. Skull base location and higher Ki-67 index were independent negative prognostic factors in MM.


Meningeal Neoplasms , Meningioma , Male , Female , Humans , Meningioma/diagnostic imaging , Meningioma/surgery , Meningeal Neoplasms/surgery , Meningeal Neoplasms/diagnosis , Ki-67 Antigen , Prognosis , World Health Organization
6.
Cell Death Dis ; 13(6): 548, 2022 06 13.
Article En | MEDLINE | ID: mdl-35697672

Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by the iron-dependent lipid reactive oxygen species (ROS) accumulation, but its mechanism in gliomas remains elusive. Acyl-coenzyme A (CoA) synthetase long-chain family member 4 (Acsl4), a pivotal enzyme in the regulation of lipid biosynthesis, benefits the initiation of ferroptosis, but its role in gliomas needs further clarification. Erastin, a classic inducer of ferroptosis, has recently been found to regulate lipid peroxidation by regulating Acsl4 other than glutathione peroxidase 4 (GPX4) in ferroptosis. In this study, we demonstrated that heat shock protein 90 (Hsp90) and dynamin-related protein 1 (Drp1) actively regulated and stabilized Acsl4 expression in erastin-induced ferroptosis in gliomas. Hsp90 overexpression and calcineurin (CN)-mediated Drp1 dephosphorylation at serine 637 (Ser637) promoted ferroptosis by altering mitochondrial morphology and increasing Acsl4-mediated lipid peroxidation. Importantly, promotion of the Hsp90-Acsl4 pathway augmented anticancer activity of erastin in vitro and in vivo. Our discovery reveals a novel and efficient approach to ferroptosis-mediated glioma therapy.


Ferroptosis , Glioma , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Dynamins , Glioma/genetics , Humans , Lipids , Serine
7.
Oncogene ; 41(18): 2597-2608, 2022 04.
Article En | MEDLINE | ID: mdl-35332268

Glioblastoma (GBM) is the most aggressive primary brain tumor as one of the deadliest cancers. The TGF-ß signaling acts as an oncogenic factor in GBM, and plays vital roles in development of GBM. SMAD7 is a major inhibitor of TGF-ß signaling, while the deubiquitination of SMAD7 has been poorly studied in GBM. Here, we found USP2 as a new prominent candidate that could regulate SMAD7 stability. USP2 was lost in GBM, leading to the poor prognosis in patients. Moreover, aberrant DNA methylation mediated by DNMT3A induced the low expression of USP2 in GBM. USP2 depletion induced TGF-ß signaling and progression of GBM. In contrast, overexpressed USP2 suppressed TGF-ß signaling and GBM development. Specifically, USP2 interacted with SMAD7 and prevented SMAD7 ubiquitination. USP2 directly cleaved Lys27- and Lys48-linked poly-ubiquitin chains of SMAD7, and Lys27-linked poly-ubiquitin chains of SMAD7 K185 mediated the recruitment of SMAD7 to HERC3, which regulated Lys63-linked poly-ubiquitination of SMAD7. Moreover, we demonstrated that the DNMT3A inhibitor SGI-1027 induced USP2, suppressed TGF-ß signaling and GBM development. Thus, USP2 repressed development of GBM by inhibition TGF-ß signaling pathway via the deubiquitination of SMAD7.


Glioblastoma , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Polyubiquitin/metabolism , Signal Transduction , Smad7 Protein/genetics , Smad7 Protein/metabolism , Transforming Growth Factor beta/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination
8.
Oxid Med Cell Longev ; 2021: 6338722, 2021.
Article En | MEDLINE | ID: mdl-34853630

Traumatic brain injury (TBI) causes a high rate of mortality and disability, and its treatment is still limited. Loss of neurons in damaged area is hardly rescued by relative molecular therapies. Based on its disease characteristics, we transplanted human embryonic stem cell- (hESC-) derived cerebral organoids in the brain lesions of controlled cortical impact- (CCI-) modeled severe combined immunodeficient (SCID) mice. Grafted organoids survived and differentiated in CCI-induced lesion pools in mouse cortical tissue. Implanted cerebral organoids differentiated into various types of neuronal cells, extended long projections, and showed spontaneous action, as indicated by electromyographic activity in the grafts. Induced vascularization and reduced glial scar were also found after organoid implantation, suggesting grafting could improve local situation and promote neural repair. More importantly, the CCI mice's spatial learning and memory improved after organoid grafting. These findings suggest that cerebral organoid implanted in lesion sites differentiates into cortical neurons, forms long projections, and reverses deficits in spatial learning and memory, a potential therapeutic avenue for TBI.


Cerebral Cortex/pathology , Organoids/transplantation , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, SCID , Transfection
9.
Pharmacol Res ; 174: 105933, 2021 12.
Article En | MEDLINE | ID: mdl-34634471

Ischemic stroke poses a significant health risk due to its high rate of disability and mortality. To address this problem, several therapeutic approaches have been proposed, including interruption targeting programmed cell death (PCD). Ferroptosis is a newly defined PCD characterized by iron-dependent accumulation of lipid peroxidation, and is becoming a promising target for treating numerous diseases. To explore the underlying mechanisms of the initiation and execution of ferroptosis in ischemic stroke, we established stroke models in vivo and in vitro simulating ischemia/reperfusion (I/R) neuronal injury. Different from previous reports on stroke, we tested ferroptosis by measuring the levels of core proteins, such as ACSL4, 15-LOX2, Ferritin and GPX4. In addition, I/R injury induces excessive degradation of ferritin via the autophagy pathway and subsequent increase of free iron in neurons. This phenomenon has recently been termed ferritinophagy and reported to be regulated by nuclear receptor coactivator 4 (NCOA4) in some cell lines. Increased NCOA4 in cytoplasm was detected in our study and then silenced by shRNA to investigate its function. Both in vivo and in vitro, NCOA4 deletion notably abrogated ferritinophagy caused by I/R injury and thus inhibited ferroptosis. Furthermore, we found that NCOA4 was upregulated by ubiquitin specific peptidase 14 (USP14) via a deubiquitination process in damaged neurons, and we found evidence of pharmacological inhibition of USP14 effectively reducing NCOA4 levels to protect neurons from ferritinophagy-mediated ferroptosis. These findings suggest a novel and effective target for treating ischemic stroke.


Ferroptosis , Infarction, Middle Cerebral Artery , Ischemic Stroke , Nuclear Receptor Coactivators , Reperfusion Injury , Animals , Brain/metabolism , Cells, Cultured , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , Lipid Peroxidation , Male , Malondialdehyde/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism
10.
Nat Commun ; 12(1): 4220, 2021 07 09.
Article En | MEDLINE | ID: mdl-34244497

Prokineticin-2 (Prok2) is an important secreted protein likely involved in the pathogenesis of several acute and chronic neurological diseases through currently unidentified regulatory mechanisms. The initial mechanical injury of neurons by traumatic brain injury triggers multiple secondary responses including various cell death programs. One of these is ferroptosis, which is associated with dysregulation of iron and thiols and culminates in fatal lipid peroxidation. Here, we explore the regulatory role of Prok2 in neuronal ferroptosis in vitro and in vivo. We show that Prok2 prevents neuronal cell death by suppressing the biosynthesis of lipid peroxidation substrates, arachidonic acid-phospholipids, via accelerated F-box only protein 10 (Fbxo10)-driven ubiquitination, degradation of long-chain-fatty-acid-CoA ligase 4 (Acsl4), and inhibition of lipid peroxidation. Mice injected with adeno-associated virus-Prok2 before controlled cortical impact injury show reduced neuronal degeneration and improved motor and cognitive functions, which could be inhibited by Fbxo10 knockdown. Our study shows that Prok2 mediates neuronal cell deaths in traumatic brain injury via ferroptosis.


Brain Injuries, Traumatic/pathology , Cerebral Cortex/pathology , Ferroptosis , Gastrointestinal Hormones/metabolism , Neuropeptides/metabolism , Adult , Aged , Animals , Brain Injuries, Traumatic/surgery , Cells, Cultured , Cerebral Cortex/cytology , Coenzyme A Ligases/metabolism , Disease Models, Animal , F-Box Proteins/genetics , F-Box Proteins/metabolism , Female , Gastrointestinal Hormones/genetics , Gene Knockdown Techniques , Humans , Lipid Peroxidation , Male , Mice , Middle Aged , Mitochondria/pathology , Neurons/cytology , Neurons/pathology , Neuropeptides/genetics , Phospholipids/biosynthesis , Primary Cell Culture , Proteolysis , Ubiquitination
11.
Neuro Oncol ; 23(12): 2014-2027, 2021 12 01.
Article En | MEDLINE | ID: mdl-33984142

BACKGROUND: Ferroptosis, a programmed cell death characterized by lipid peroxidation, is implicated in various diseases including cancer. Although cell density-dependent E-cadherin and Merlin/Neurofibromin (NF2) loss can modulate ferroptosis, the role of ferroptosis and its potential link to NF2 status and E-cadherin expression in meningioma remain unknown. METHODS: Relationship between ferroptosis modulators expression and NF2 mutational status was examined in 35 meningiomas (10 NF2 loss and 25 NF2 wild type). The impact of NF2 and E-cadherin on ferroptosis were examined by lactate dehydrogenase (LDH) release, lipid peroxidation, and western blot assays in IOMM-Lee, CH157, and patient-derived meningioma cell models. Luciferase reporter and chromatin immunoprecipitation assays were used to assess the ability of MEF2C (myocyte enhancer factor 2C) to drive expression of NF2 and CDH1 (E-cadherin). Therapeutic efficacy of Erastin-induced ferroptosis was tested in xenograft mouse models. RESULTS: Meningioma cells with NF2 inactivation were susceptible to Erastin-induced ferroptosis. Meningioma cells grown at higher density increased expression of E-cadherin, which suppressed Erastin-induced ferroptosis. Maintaining NF2 and E-cadherin inhibited ferroptosis-related lipid peroxidation and meningioma cell death. MEF2C was found to drive the expression of both NF2 and E-cadherin. MEF2C silencing enhanced Erastin-induced ferroptotic meningioma cell death and lipid peroxidation levels in vitro, which was limited by forced expression of MEF2C targets, NF2 and E-cadherin. In vivo, anti-meningioma effect of Erastin was augmented by MEF2C knockdown and was counteracted by NF2 or E-cadherin. CONCLUSIONS: NF2 loss and low E-cadherin create susceptibility to ferroptosis in meningioma. MEF2C could be a new molecular target in ferroptosis-inducing therapies for meningioma.


Ferroptosis , MEF2 Transcription Factors , Meningeal Neoplasms , Meningioma , Animals , Antigens, CD , Cadherins/genetics , Cell Line, Tumor , Gene Silencing , Humans , MEF2 Transcription Factors/genetics , Meningeal Neoplasms/drug therapy , Meningeal Neoplasms/genetics , Meningioma/drug therapy , Meningioma/genetics , Mice , Neurofibromin 2 , Piperazines , Xenograft Model Antitumor Assays
12.
Cell Mol Neurobiol ; 41(8): 1651-1663, 2021 Nov.
Article En | MEDLINE | ID: mdl-32770297

Concussion is a widely recognized environmental risk factor for neurodegenerative diseases, including Parkinson's disease (PD). Small-vessel disease of the brain has been reported to contribute to neurodegenerative diseases. In this study, we observed BBB disruption in wild-type (WT) mice, but not in matrix metalloproteinase 9 (MMP-9) knockout mice, subjected to single severe traumatic brain injury (ssTBI). Furthermore, treating ssTBI mice with the MMP-9 inhibitor GM6001 effectively maintained BBB integrity, promoted the elimination of damaged mitochondria via mitophagy, and then prevented neuronal death and progressive neurodegeneration. However, we did not observe this neuroprotective effect of MMP-9 inhibition in beclin-1-/+ mice. Collectively, these findings revealed that concussion led to BBB disruption via MMP-9, and that GM6001 prevented the development of PD via the autophagy pathway.


Autophagy/drug effects , Brain Injuries, Traumatic/drug therapy , Dipeptides/therapeutic use , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/therapeutic use , Parkinsonian Disorders/drug therapy , Animals , Autophagy/physiology , Brain/drug effects , Brain/enzymology , Brain/pathology , Brain Injuries, Traumatic/enzymology , Brain Injuries, Traumatic/pathology , Dipeptides/pharmacology , Female , Male , Matrix Metalloproteinase Inhibitors/pharmacology , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parkinsonian Disorders/enzymology , Parkinsonian Disorders/pathology , Signal Transduction/drug effects , Signal Transduction/physiology , Trauma Severity Indices
13.
J Cell Mol Med ; 24(15): 8466-8479, 2020 08.
Article En | MEDLINE | ID: mdl-32585748

Microglial cells are key component of central nervous system (CNS) and mediate the immune response of the brain under physiological or pathological conditions. It tends to activate into a pro-inflammatory M1 phenotype after traumatic brain injury (TBI) and promote secondary brain damage. Recently, necroptosis was found to promote microglial activation and neuroinflammation after TBI. However, the mechanism and specific interventions of microglial necroptosis after TBI remain poorly investigated. Here, we reported that overexpress the charged multivesicular body protein 4b (CHMP4B) which is a core member of the endosomal sorting required for transport complex III (ESCRT-III) significantly decreased the level of necroptosis in microglia, improved neurological function recovery and protected against cell death after TBI. Further investigation showed that forkhead transcription factor O1 (FOXO1) was a crucial transcription factor that increased CHMP4B transcription by binding to the promoter region, thereby inhibiting necroptosis in microglia. Collectively, our findings demonstrated that CHMP4B relieved microglial necroptosis and neuroinflammation after TBI, and promote the recovery of nerve function. FOXO1 is an important factor in promoting CHMP4B expression. This study provides the novel viewpoint for TBI prevention and treatment.


Brain Injuries, Traumatic/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Microglia/pathology , Necroptosis/genetics , Up-Regulation/genetics , Adult , Aged , Animals , Brain/pathology , Brain Injuries, Traumatic/pathology , Cell Line , Female , Forkhead Box Protein O1/genetics , Gene Expression Regulation/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Promoter Regions, Genetic/genetics , Young Adult
14.
Brain Res Bull ; 162: 84-93, 2020 09.
Article En | MEDLINE | ID: mdl-32502596

Cognitive decline is one of the most obvious symptoms of traumatic brain injury (TBI). Previous studies have demonstrated that cognitive decline is related to substantially increased neuroinflammation and decreased neurogenesis in the hippocampus in a rat model of TBI. Using this model, we explored the role of curcumin (Cur) in ameliorating TBI-impaired spatial memory because Cur has been shown to exhibit anti-chronic-neuroinflammatory, neurogenesis-promoting, and memory-improving properties. Animals received daily Cur or vehicle treatment for 28 days after TBI and also received 50-bromodeoxyuridine(BrdU) for the first 7 days of the treatment for assaying neurogenesis. An optimal Cur dose of 30 mg/kg, selected from a range of 10-50 mg/kg, was used for the present study. Neuroinflammation was evaluated by astrocyte hypertrophy, activated microglia, and inflammatory factors in the hippocampus. Behavioral water-maze studies were conducted for 5 days, starting at 35-day post-TBI. The tropomyosin receptor kinase B (Trkb) inhibitor, ANA-12, was used to test the role of the brain-derived neurotrophic factor (BDNF)/ TrkB/Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in regulating inflammation and neurogenesis in the hippocampus. Treatment with Cur ameliorated the spatial memory of TBI rats, reduced TBI-induced chronic inflammation, typified by diminished astrocyte hypertrophy, reduction in activated microglia, declined inflammatory factors, and increased neurogenesis in the hippocampus. We also found that BDNF/Trkb/PI3K/Akt signaling was involved in the effects of Cur in TBI rats. Thus, Cur treatment can ameliorate the spatial memory in a murine model of TBI, which may be attributable to decreased chronic neuroinflammation, increased hippocampal neurogenesis, and/or BDNF/Trkb/PI3K/Akt signaling.


Brain Injuries, Traumatic/drug therapy , Curcumin/therapeutic use , Hippocampus/drug effects , Inflammation Mediators/antagonists & inhibitors , Neurogenesis/drug effects , Spatial Memory/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Curcumin/pharmacology , Dose-Response Relationship, Drug , Hippocampus/metabolism , Hippocampus/pathology , Inflammation Mediators/metabolism , Male , Maze Learning/drug effects , Maze Learning/physiology , Neurogenesis/physiology , Rats , Rats, Sprague-Dawley , Spatial Memory/physiology
15.
Clin Cancer Res ; 26(7): 1749-1762, 2020 04 01.
Article En | MEDLINE | ID: mdl-31900278

PURPOSE: Glioblastoma (GBM) is one of the most aggressive and lethal cancer types in humans. The standard treatment approach is surgery followed by chemoradiation. However, the molecular mechanisms of innate tumor radioresistance remain poorly understood. EXPERIMENTAL DESIGN: We tested the expression of Smoothened (Smo) in primary and recurrent GBM tissues and cells. Then, we determined radiation effectiveness against primary and recurrent GBM cells. Lastly, the functional role of Smo in GBM radioresistance was further confirmed by in vitro and in vivo experiments. RESULTS: We reported that Smo was significantly upregulated in recurrent GBM cell lines and tumor tissues following radiation treatment. Higher Smo expression indicated poor prognosis of GBM patients after radiation treatment. Smo had radioresistance effects in both GBM cells and human tumor xenografts. The mechanisms underlying these effects involved the attenuation of DNA damage repair caused by IR. Importantly, we found that the effect of Smo on radioresistance was mediated by Claspin polyubiquitination and proteasomal degradation, leading to the regulation of ATR-Chk1 signaling. Moreover, we found that Smo reduced Claspin polyubiquitination and proteasomal degradation by promoting USP3 transcription. Furthermore, we demonstrated that the Smo inhibitor GDC-0449 induced radiosensitivity to GBM. CONCLUSIONS: These data suggest that Smo confers radiation resistance in GBM by promoting USP3 transcription, leading to the activation of Claspin-dependent ATR-Chk1 signaling. These findings identify a potential mechanism of GBM resistance to radiation and suggest a potential therapeutic target for radiation resistance in GBM.


Adaptor Proteins, Signal Transducing/metabolism , Brain Neoplasms/radiotherapy , DNA Repair , Glioblastoma/radiotherapy , Neoplasm Recurrence, Local/radiotherapy , Smoothened Receptor/genetics , Ubiquitin-Specific Proteases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Animals , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Mice , Mice, Nude , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Signal Transduction , Smoothened Receptor/metabolism , Ubiquitin-Specific Proteases/genetics , Xenograft Model Antitumor Assays
16.
J Cell Mol Med ; 24(2): 1474-1487, 2020 01.
Article En | MEDLINE | ID: mdl-31856394

Tumour invasion is closely related to the prognosis and recurrence of glioblastoma multiforme and partially attributes to epithelial-mesenchymal transition. Long intergenic non-coding RNA 00511 (LINC00511) plays a pivotal role in tumour; however, the role of LINC00511 in GBM, especially in the epigenetic molecular regulation mechanism of EMT, is still unclear. Here, we found that LINC00511 was up-regulated in GBM tissues and relatively high LINC00511 expression predicted poorer prognosis. Moreover, ectopic LINC00511 enhanced GBM cells proliferation, EMT, migration and invasion, whereas LINC00511 knockdown had the opposite effects. Mechanistically, we confirmed that ZEB1 acted as a transcription factor for LINC00511 in GBM cells. Subsequently, we found that LINC00511 served as a competing endogenous RNA that sponged miR-524-5p to indirectly regulate YB1, whereas, up-regulated YB1 promoted ZEB1 expression, which inversely facilitated LINC00511 expression. Finally, orthotopic xenograft models were performed to further demonstrate the LINC00511 on GBM tumorigenesis. This study demonstrates that a LINC00511/miR-524-5p/YB1/ZEB1 positive feedback loop provides potential therapeutic targets for GBM progression.


Carcinogenesis/genetics , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Glioblastoma/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Y-Box-Binding Protein 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Base Sequence , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Carcinogenesis/pathology , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , HEK293 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , Prognosis , RNA, Long Noncoding/genetics , Transcription, Genetic , Up-Regulation/genetics
17.
Front Mol Neurosci ; 12: 222, 2019.
Article En | MEDLINE | ID: mdl-31607859

Programmed cell death is an important biological process that plays an indispensable role in traumatic brain injury (TBI). Inhibition of necroptosis, a type of programmed cell death, is pivotal in neuroprotection and in preventing associated inflammatory responses. Our results showed that necroptosis occurred in human brain tissues after TBI. Necroptosis was also induced by controlled cortical impact (CCI) injury in a rat model of TBI and was accompanied by high translocation of high-mobility group box-1 (HMGB1) to the cytoplasm. HMGB1 was then passed through the impaired cell membrane to upregulate the receptor for advanced glycation end-products (RAGE), nuclear factor (NF)-κB, and inflammatory factors such as interleukin-6 (IL-6), interleukin-1 (IL-1ß), as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3). Necroptosis was alleviated by necrostatin-1 and melatonin but not Z-VAD (a caspase inhibitor), which is consistent with the characteristic of caspase-independent signaling. This study also demonstrated that tumor necrosis factor, alpha-induced protein 3 (TNFAIP3, also known as A20) was indispensable for regulating and controlling necroptosis and inflammation after CCI. We found that a lack of A20 in a CCI model led to aggressive necroptosis and attenuated the anti-necroptotic effects of necrostatin-1 and melatonin.

18.
J Cell Mol Med ; 23(10): 6907-6918, 2019 10.
Article En | MEDLINE | ID: mdl-31430050

Glioblastoma (GBM) is the most universal type of primary brain malignant tumour, and the prognosis of patients with GBM is poor. S100A11 plays an essential role in tumour. However, the role and molecular mechanism of S100A11 in GBM are not clear. Here, we found that S100A11 was up-regulated in GBM tissues and higher S100A11 expression indicated poor prognosis of GBM patients. Overexpression of S100A11 promoted GBM cell growth, epithelial-mesenchymal transition (EMT), migration, invasion and generation of glioma stem cells (GSCs), whereas its knockdown inhibited these activities. More importantly, S100A11 interacted with ANXA2 and regulated NF-κB signalling pathway through decreasing ubiquitination and degradation of ANXA2. Additionally, NF-κB regulated S100A11 at transcriptional level as a positive feedback. We also demonstrated the S100A11 on tumour growth in GBM using an orthotopic tumour xenografting. These data demonstrate that S100A11/ANXA2/NF-κB positive feedback loop in GBM cells that promote the progression of GBM.


Annexin A2/metabolism , Brain Neoplasms/genetics , Feedback, Physiological , Glioblastoma/genetics , NF-kappa B/metabolism , Oncogenes , S100 Proteins/metabolism , Animals , Brain Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , Signal Transduction , Spheroids, Cellular/pathology , Transcription, Genetic , Ubiquitination , Up-Regulation/genetics
20.
J Neurosci ; 39(10): 1930-1943, 2019 03 06.
Article En | MEDLINE | ID: mdl-30626699

Mitochondrial energy production is essential for normal brain function. Traumatic brain injury (TBI) increases brain energy demands, results in the activation of mitochondrial respiration, associated with enhanced generation of reactive oxygen species. This chain of events triggers neuronal apoptosis via oxidation of a mitochondria-specific phospholipid, cardiolipin (CL). One pathway through which cells can avoid apoptosis is via elimination of damaged mitochondria by mitophagy. Previously, we showed that externalization of CL to the mitochondrial surface acts as an elimination signal in cells. Whether CL-mediated mitophagy occurs in vivo or its significance in the disease processes are not known. In this study, we showed that TBI leads to increased mitophagy in the human brain, which was also detected using TBI models in male rats. Knockdown of CL synthase, responsible for de novo synthesis of CL, or phospholipid scramblase-3, responsible for CL translocation to the outer mitochondrial membrane, significantly decreased TBI-induced mitophagy. Inhibition of mitochondrial clearance by 3-methyladenine, mdivi-1, or phospholipid scramblase-3 knockdown after TBI led to a worse outcome, suggesting that mitophagy is beneficial. Together, our findings indicate that TBI-induced mitophagy is an endogenous neuroprotective process that is directed by CL, which marks damaged mitochondria for elimination, thereby limiting neuronal death and behavioral deficits.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) increases energy demands leading to activation of mitochondrial respiration associated with enhanced generation of reactive oxygen species and resultant damage to mitochondria. We demonstrate that the complete elimination of irreparably damaged organelles via mitophagy is activated as an early response to TBI. This response includes translocation of mitochondria phospholipid cardiolipin from the inner membrane to the outer membrane where externalized cardiolipin mediates targeted protein light chain 3-mediated autophagy of damaged mitochondria. Our data on targeting phospholipid scramblase and cardiolipin synthase in genetically manipulated cells and animals strongly support the essential role of cardiolipin externalization mechanisms in the endogenous reparative plasticity of injured brain cells. Furthermore, successful execution and completion of mitophagy is beneficial in the context of preservation of cognitive functions after TBI.


Brain Injuries, Traumatic/metabolism , Brain/metabolism , Cardiolipins/metabolism , Mitophagy/physiology , Neurons/metabolism , Animals , Apoptosis/physiology , Brain/ultrastructure , Brain Injuries, Traumatic/pathology , Humans , Male , Mitochondrial Membranes/metabolism , Neurons/ultrastructure , Rats, Sprague-Dawley , Signal Transduction
...