Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Sci Rep ; 14(1): 5225, 2024 03 04.
Article En | MEDLINE | ID: mdl-38433244

Trypanosoma cruzi, the etiological agent of Chagas disease, invades many cell types affecting numerous host-signalling pathways. During the T. cruzi infection, we demonstrated modulations in the host RNA polymerase II activity with the downregulation of ribonucleoproteins affecting host transcription and splicing machinery. These alterations could be a result of the initial damage to the host DNA caused by the presence of the parasite, however, the mechanisms are not well understood. Herein, we examined whether infection by T. cruzi coincided with enhanced DNA damage in the host cell. We studied the engagement of the DNA damage response (DDR) pathways at the different time points (0-24 h post-infection, hpi) by T. cruzi in LLC-MK2 cells. In response to double-strand breaks (DSB), maximum phosphorylation of the histone variant H2AX is observed at 2hpi and promotes recruitment of the DDR p53-binding protein (53BP1). During T. cruzi infection, Ataxia-telangiectasia mutated protein (ATM) and DNA-PK protein kinases remained active in a time-dependent manner and played roles in regulating the host response to DSB. The host DNA lesions caused by the infection are likely orchestrated by the non-homologous end joining (NHEJ) pathway to maintain the host genome integrity.


Chagas Disease , DNA Breaks, Double-Stranded , Humans , Epithelial Cells , Chagas Disease/genetics , Phosphorylation , DNA Repair
2.
Front Cell Infect Microbiol ; 11: 718028, 2021.
Article En | MEDLINE | ID: mdl-34737973

Host manipulation is a common strategy for invading pathogens. Trypanosoma cruzi, the causative agent of Chagas Disease, lives intracellularly within host cells. During infection, parasite-associated modifications occur to the host cell metabolism and morphology. However, little is known about the effect of T. cruzi infection on the host cell nucleus and nuclear functionality. Here, we show that T. cruzi can modulate host transcription and splicing machinery in non-professional phagocytic cells during infection. We found that T. cruzi regulates host RNA polymerase II (RNAPII) in a time-dependent manner, resulting in a drastic decrease in RNAPII activity. Furthermore, host cell ribonucleoproteins associated with mRNA transcription (hnRNPA1 and AB2) are downregulated concurrently. We reasoned that T. cruzi may hijack the host U2AF35 auxiliary factor, a key regulator for RNA processing, as a strategy to affect the splicing machinery activities directly. In support of our hypothesis, we carried out in vivo splicing assays using an adenovirus E1A pre-mRNA splicing reporter, showing that intracellular T. cruzi directly modulates the host cells by appropriating U2AF35. For the first time, our results provide evidence of a complex and intimate molecular relationship between T. cruzi and the host cell nucleus during infection.


Chagas Disease , Parasites , Trypanosoma cruzi , Animals , Cell Nucleus , Transcription, Genetic , Trypanosoma cruzi/genetics
3.
J Vis Exp ; (173)2021 07 10.
Article En | MEDLINE | ID: mdl-34309591

Nowadays, it is possible to find a wide range of molecular tools available to study parasite-host cell interactions. However, some limitations exist to obtain commercial monoclonal or polyclonal antibodies that recognize specific cell structures and proteins in parasites. Besides, there are few commercial antibodies available to label trypanosomatids. Usually, polyclonal antibodies against parasites are prepared in-house and could be more challenging to use in combination with other antibodies produced in the same species. Here, the protocol demonstrates how to use polyclonal and monoclonal antibodies raised in the same species to perform double labeling immunofluorescence to study host cell and pathogen interactions. To achieve the double labeling immunofluorescence, it is crucial to incubate first the mouse polyclonal antibody and then follow the incubation with the secondary mouse IgG antibody conjugated to any fluorochrome. After that, an additional blocking step is necessary to prevent any trace of the primary antibody from being recognized by the next secondary antibody. Then, a mouse monoclonal antibody and its specific IgG subclass secondary antibody conjugated to a different fluorochrome are added to the sample at the appropriate times. Additionally, it is possible to perform triple labeling immunofluorescence using a third antibody raised in a different species. Also, structures such as nuclei and actin can be stained subsequently with their specific compounds or labels. Thus, these approaches presented here can be adjusted for any cell whose sources of primary antibodies are limited.


Antibodies, Monoclonal , Fluorescent Dyes , Animals , Fluorescent Antibody Technique , Host-Pathogen Interactions , Immunoglobulin G , Mice
4.
Epilepsia ; 61(8): 1581-1594, 2020 08.
Article En | MEDLINE | ID: mdl-32662890

OBJECTIVE: Drebrins are crucial for synaptic function and dendritic spine development, remodeling, and maintenance. In temporal lobe epilepsy (TLE) patients, a significant hippocampal synaptic reorganization occurs, and synaptic reorganization has been associated with hippocampal hyperexcitability. This study aimed to evaluate, in TLE patients, the hippocampal expression of drebrin using immunohistochemistry with DAS2 or M2F6 antibodies that recognize adult (drebrin A) or adult and embryonic (pan-drebrin) isoforms, respectively. METHODS: Hippocampal sections from drug-resistant TLE patients with hippocampal sclerosis (HS; TLE, n = 33), of whom 31 presented with type 1 HS and two with type 2 HS, and autopsy control cases (n = 20) were assayed by immunohistochemistry and evaluated for neuron density, and drebrin A and pan-drebrin expression. Double-labeling immunofluorescences were performed to localize drebrin A-positive spines in dendrites (MAP2), and to evaluate whether drebrin colocalizes with inhibitory (GAD65) and excitatory (VGlut1) presynaptic markers. RESULTS: Compared to controls, TLE patients had increased pan-drebrin in all hippocampal subfields and increased drebrin A-immunopositive area in all hippocampal subfields but CA1. Drebrin-positive spine density followed the same pattern as total drebrin quantification. Confocal microscopy indicated juxtaposition of drebrin-positive spines with VGlut1-positive puncta, but not with GAD65-positive puncta. Drebrin expression in the dentate gyrus of TLE cases was associated negatively with seizure frequency and positively with verbal memory. TLE patients with lower drebrin-immunopositive area in inner molecular layer (IML) than in outer molecular layer (OML) had a lower seizure frequency than those with higher or comparable drebrin-immunopositive area in IML compared with OML. SIGNIFICANCE: Our results suggest that changes in drebrin-positive spines and drebrin expression in the dentate gyrus of TLE patients are associated with lower seizure frequency, more preserved verbal memory, and a better postsurgical outcome.


Drug Resistant Epilepsy/metabolism , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Neuropeptides/metabolism , Adult , Aged , Aged, 80 and over , Anterior Temporal Lobectomy , CA1 Region, Hippocampal/metabolism , CA2 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/metabolism , Case-Control Studies , Dendrites/metabolism , Dendrites/pathology , Dentate Gyrus/metabolism , Drug Resistant Epilepsy/pathology , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/surgery , Female , Glutamate Decarboxylase/metabolism , Hippocampus/pathology , Hippocampus/surgery , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Microtubule-Associated Proteins/metabolism , Middle Aged , Neuronal Plasticity , Sclerosis , Vesicular Glutamate Transport Protein 1/metabolism
5.
PLoS Negl Trop Dis ; 8(11): e3309, 2014 Nov.
Article En | MEDLINE | ID: mdl-25393008

BACKGROUND: Visceral leishmaniasis is an important tropical disease, and Leishmania infantum chagasi (synonym of Leishmania infantum) is the main pathogenic agent of visceral leishmaniasis in the New World. Recently, ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) were identified as enablers of infection and virulence factors in many pathogens. Two putative E-NTPDases (∼70 kDa and ∼45 kDa) have been found in the L. infantum genome. Here, we studied the ∼45 kDa E-NTPDase from L. infantum chagasi to describe its natural occurrence, biochemical characteristics and influence on macrophage infection. METHODOLOGY/PRINCIPAL FINDINGS: We used live L. infantum chagasi to demonstrate its natural ecto-nucleotidase activity. We then isolated, cloned and expressed recombinant rLicNTPDase-2 in bacterial system. The recombinant rLicNTPDase-2 hydrolyzed a wide variety of triphosphate and diphosphate nucleotides (GTP> GDP  =  UDP> ADP> UTP  =  ATP) in the presence of calcium or magnesium. In addition, rLicNTPDase-2 showed stable activity over a pH range of 6.0 to 9.0 and was partially inhibited by ARL67156 and suramin. Microscopic analyses revealed the presence of this protein on cell surfaces, vesicles, flagellae, flagellar pockets, kinetoplasts, mitochondria and nuclei. The blockade of E-NTPDases using antibodies and competition led to lower levels of parasite adhesion and infection of macrophages. Furthermore, immunohistochemistry showed the expression of E-NTPDases in amastigotes in the lymph nodes of naturally infected dogs from an area of endemic visceral leishmaniasis. CONCLUSIONS/SIGNIFICANCE: In this work, we cloned, expressed and characterized the NTPDase-2 from L. infantum chagasi and demonstrated that it functions as a genuine enzyme from the E-NTPDase/CD39 family. We showed that E-NTPDases are present on the surface of promastigotes and in other intracellular locations. We showed, for the first time, the broad expression of LicNTPDases in naturally infected dogs. Additionally, the blockade of NTPDases led to lower levels of in vitro adhesion and infection, suggesting that these proteins are possible targets for rational drug design.


Apyrase/metabolism , Leishmania infantum/enzymology , Leishmaniasis, Visceral/parasitology , Macrophages/parasitology , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Apyrase/chemistry , Apyrase/genetics , Cell Line , Dogs , Female , Leishmania infantum/chemistry , Leishmania infantum/cytology , Leishmania infantum/metabolism , Lymph Nodes/parasitology , Mice , Molecular Sequence Data , Phylogeny , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Rabbits , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
6.
Article En | MEDLINE | ID: mdl-25182860

The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²âº/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean chromatophores share various features with those of vertebrate pigment cells.


Cytoplasmic Granules/metabolism , Cytoskeleton/physiology , Invertebrate Hormones/metabolism , Ovary/metabolism , Palaemonidae/physiology , Pigments, Biological/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/physiology , Actin Cytoskeleton/ultrastructure , Animals , Biological Transport/drug effects , Brazil , Cell Surface Extensions/drug effects , Cell Surface Extensions/physiology , Cell Surface Extensions/ultrastructure , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/ultrastructure , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure , Dyneins/antagonists & inhibitors , Dyneins/metabolism , Female , Marine Toxins/pharmacology , Microtubules/drug effects , Microtubules/physiology , Microtubules/ultrastructure , Myosins/antagonists & inhibitors , Myosins/metabolism , Nonmuscle Myosin Type IIA/antagonists & inhibitors , Nonmuscle Myosin Type IIA/metabolism , Nonmuscle Myosin Type IIB/antagonists & inhibitors , Nonmuscle Myosin Type IIB/metabolism , Oligopeptides/metabolism , Ovary/drug effects , Ovary/ultrastructure , Palaemonidae/drug effects , Palaemonidae/ultrastructure , Protein Transport/drug effects , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Rivers , Tubulin Modulators/pharmacology
7.
Acta Trop ; 130: 140-7, 2014 Feb.
Article En | MEDLINE | ID: mdl-24269744

Previous work has suggested that Trypanosoma cruzi diphosphohydrolase 1 (TcNTPDase-1) may be involved in the infection of mammalian cells and serve as a potential target for rational drug design. In this work, we produced recombinant TcNTPDase-1 and evaluated its nucleotidase activity, cellular localization and role in parasite adhesion to mammalian host cells. TcNTPDase-1 was able to utilize a broad range of triphosphate and diphosphate nucleosides. The enzyme's Km for ATP (0.096 mM) suggested a capability to influence the host's ATP-dependent purinergic signaling. The use of specific polyclonal antibodies allowed us to confirm the presence of TcNTPDase-1 at the surface of parasites by confocal and electron microscopy. In addition, electron microscopy revealed that TcNTPDase-1 was also found in the flagellum, flagellum insertion region, kinetoplast, nucleus and intracellular vesicles. The presence of this enzyme in the flagellum insertion region and vesicles suggests that it may have a role in nutrient acquisition, and the widespread distribution of TcNTPDase-1 within the parasite suggests that it may be involved in other biological process. Adhesion assays using anti-TcNTPDase-1 polyclonal antibodies as a blocker or purified recombinant TcNTPDase-1 as a competitor revealed that the enzyme has a role in parasite-host cell adhesion. These data open new frontiers to future studies on this specific parasite-host interaction and other unknown functions of TcNTPDase-1 related to its ubiquitous localization.


Antigens, CD/physiology , Apyrase/physiology , Cell Adhesion/physiology , Host-Parasite Interactions/physiology , Trypanosoma cruzi/enzymology , Animals , Antigens, CD/chemistry , Apyrase/chemistry , Blotting, Western , Immunohistochemistry
...