Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Meas Sci Au ; 3(5): 315-336, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37868357

RESUMEN

This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.

2.
Sci Total Environ ; 903: 166447, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37604377

RESUMEN

In this study, we are reporting a novel electrochemical capacitance spectroscopy (ECS) platform designed for the sensitive and label-free detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus spike protein (anti-rS) in diluted blood serum. The determination of anti-rS is crucial for identification individuals who have been infected by SARS-CoV-2 virus and may have acquired immunity. The rS protein was immobilized on a screen-printed carbon electrode, which was incubated in diluted blood serum containing anti-rS antibodies. Label-free ECS was applied for the determination of interaction between immobilized rS and free-standing anti-rS. Here reported bioanalytical platform demonstrated high sensitivity and specificity in detecting anti-rS, achieving a limit of detection of 4.38 nM. This versatile platform could be further enhanced by applying various electrode materials and adapting this platform to detect antibodies against some other proteins. Our findings have significant implications for the development of affordable, scalable biosensing platforms capable to provide rapid and accurate public health screening and monitoring, particularly in the context of the coronavirus disease 2019 (COVID-19) pandemic.

3.
Chemosphere ; 329: 138552, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37003438

RESUMEN

Persistent contaminants in wastewater effluent pose a significant threat to aquatic life and are one of the most significant environmental concerns of our time. Although there are a variety of traditional methods available in wastewater treatment, including adsorption, coagulation, flocculation, ion exchange, membrane filtration, co-precipitation and solvent extraction, none of these have been found to be significantly cost-effective in removing toxic pollutants from the water environment. The upfront costs of these treatment methods are extremely high, and they require the use of harmful synthetic chemicals. For this reason, the development of new technologies for the treatment and recycling of wastewater is an absolute necessity. Our way of life can be made more sustainable by the synthesis of adsorbents based on biomass, making the process less harmful to the environment. Biopolymers offer a sustainable alternative to synthetic polymers, which are manufactured by joining monomer units through covalent bonding. This review presents a detailed classification of biopolymers such as pectin, alginate, chitosan, lignin, cellulose, chitin, carrageen, certain proteins, and other microbial biomass compounds and composites, with a focus on their sources, methods of synthesis, and prospective applications in wastewater treatment. A concise summary of the extensive body of knowledge on the fate of biopolymers after adsorption is also provided. Finally, consideration is given to open questions about future developments leading to environmentally friendly and economically beneficial applications of biopolymers.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Biopolímeros/química , Celulosa/química , Quitina , Agua , Contaminantes Químicos del Agua/química , Adsorción
4.
Sci Total Environ ; 862: 160700, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493838

RESUMEN

In this work, we report an impedimetric system for the detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein. The sensing platform is based on recombinant Spike protein (SCoV2-rS) immobilized on the phytic acid doped polyaniline films (PANI-PA). The affinity interaction between immobilized SCoV2-rS protein and antibodies in the physiological range of concentrations was registered by electrochemical impedance spectroscopy. Analytical parameters of the sensing platform were tuned by the variation of electropolymerization times during the synthesis of PANI-PA films. The lowest limit of detection and quantification were obtained for electropolymerization time of 20 min and equalled 8.00 ± 0.20 nM and 23.93 ± 0.60 nM with an equilibrium dissociation constant of 3 nM. The presented sensing system is label-free and suitable for the direct detection of antibodies against SARS-CoV-2 in real patient serum samples after coronavirus disease 2019 and/or vaccination.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Anticuerpos , Técnicas Electroquímicas , Electrodos
5.
Biosensors (Basel) ; 12(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36004989

RESUMEN

In this research, we assessed the applicability of electrochemical sensing techniques for detecting specific antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins in the blood serum of patient samples following coronavirus disease 2019 (COVID-19). Herein, screen-printed carbon electrodes (SPCE) with electrodeposited gold nanostructures (AuNS) were modified with L-Cysteine for further covalent immobilization of recombinant SARS-CoV-2 spike proteins (rSpike). The affinity interactions of the rSpike protein with specific antibodies against this protein (anti-rSpike) were assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. It was revealed that the SPCE electroactive surface area increased from 1.49 ± 0.02 cm2 to 1.82 ± 0.01 cm2 when AuNS were electrodeposited, and the value of the heterogeneous electron transfer rate constant (k0) changed from 6.30 × 10-5 to 14.56 × 10-5. The performance of the developed electrochemical immunosensor was evaluated by calculating the limit of detection and limit of quantification, giving values of 0.27 nM and 0.81 nM for CV and 0.14 nM and 0.42 nM for DPV. Furthermore, a specificity test was performed with a solution of antibodies against bovine serum albumin as the control aliquot, which was used to assess nonspecific binding, and this evaluation revealed that the developed rSpike-based sensor exhibits low nonspecific binding towards anti-rSpike antibodies.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanoestructuras , Anticuerpos , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Carbono/química , Técnicas Electroquímicas/métodos , Electrodos , Oro/química , Humanos , Inmunoensayo/métodos , Límite de Detección , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
6.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743208

RESUMEN

The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Animales , Anticuerpos , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Técnicas Electroquímicas/métodos , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
7.
Biosens Bioelectron ; 172: 112705, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33166803

RESUMEN

In this work we demonstrate that an impedance derived capacitance method is able to cleanly resolve the resonant conductance characteristics of an electrode-confined polymer film. In decorating the film with receptors, this conductance is thereafter modulated by the capturing of specific targets, demonstrated herein with C-reactive protein. This entirely reagentless and single step marker quantification is relevant to the drive of moving assays to a scaleable format requiring minimal user intervention.


Asunto(s)
Técnicas Biosensibles , Polímeros , Capacidad Eléctrica , Electrodos
8.
ACS Appl Mater Interfaces ; 12(29): 32233-32246, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32438798

RESUMEN

An efficient procedure for chemical initiator-free, in situ synthesis of a functional polyethylene glycol methacrylate (PEG MA) hydrogel on regular glass substrates is reported. It is demonstrated that self-initiated photografting and photopolymerization driven by UV irradiation can yield tens of nanometer-thick coatings of carboxy-functionalized PEG MA on the aldehyde-terminated borosilicate glass surface. The most efficient formulation for hydrogel synthesis contained methyl methacrylic acid (MAA), 2-hydroxyethyl methacrylate (HEMA), and PEG methacrylate (PEG10MA) monomers (1:1:1). The resulting HEMA/PEG10MA/MAA (HPMAA) coatings had a defined thickness in the range from 11 to 50 nm. The physicochemical properties of the synthesized HPMAA coatings were analyzed by combining water contact angle measurements, stylus profilometry, imaging null ellipsometry, and atomic force microscopy (AFM). The latter technique was employed in the quantitative imaging mode not only for direct probing of the surface topography but also for swelling behavior characterization in the pH range from 4.5 to 8.0. The estimated high swelling ratios of the HPMAA hydrogel (up to 3.2) together with its good stability and resistance to nonspecific protein binding were advantageous in extracellular matrix mimetics via patterning of fibronectin (FN) at a resolution close to 200 nm. It was shown that the fabricated FN micropatterns on HPMAA were equally suitable for single-cell arraying, as well as controlled cell culture lasting at least for 96 h.


Asunto(s)
Técnicas Biosensibles , Materiales Biocompatibles Revestidos/química , Hidrogeles/química , Metacrilatos/química , Polietilenglicoles/química , Análisis de la Célula Individual , Técnicas de Cultivo de Célula , Células Cultivadas , Materiales Biocompatibles Revestidos/síntesis química , Fibronectinas/química , Vidrio/química , Humanos , Hidrogeles/síntesis química , Concentración de Iones de Hidrógeno , Metacrilatos/síntesis química , Microscopía Fluorescente , Estructura Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Polietilenglicoles/síntesis química , Propiedades de Superficie , Rayos Ultravioleta
9.
Anal Chem ; 92(5): 3508-3511, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32046485

RESUMEN

Methods that enable the sensitive and label-free detection of protein biomarkers are well-positioned to make potentially significant contributions to diagnostics and derived personalized healthcare. In support of this goal, a myriad of (electrochemical) methodologies have been developed; recently, electrochemical capacitance spectroscopy emerged as an impedance-derived approach which, in employing surface-confined redox-transducers, circumvents problems associated with the use of solution-phase redox-probes. Herein, we expand this scope by utilizing phytic acid-doped polyaniline as a novel redox-charging polymer support enabling the reagentless assaying of C-reactive protein in serum with good sensitivity. The construction of the sensory interface via electropolymerization allows facile tuning of the surface coverage and redox (capacitive) properties of the polymers, which, in turn, modulate both assay selectivity, fouling, and sensitivity. Significantly, this methodology is readily extendable to a wide range of electrode materials and analytes.


Asunto(s)
Compuestos de Anilina/química , Proteína C-Reactiva/química , Capacidad Eléctrica , Electroquímica , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...