Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Adv Sci (Weinh) ; 9(23): e2201212, 2022 08.
Article En | MEDLINE | ID: mdl-35694866

Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aß+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aß- and 90 Aß+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aß-, 5 Aß+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.


Alzheimer Disease , Amyloidosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/metabolism , Amyloidosis/metabolism , Autophagy/genetics , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Microglia/metabolism , Microglia/pathology
2.
Nature ; 594(7861): 117-123, 2021 06.
Article En | MEDLINE | ID: mdl-34012113

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Protein Biosynthesis/genetics , Proteostasis/genetics , RNA, Antisense/genetics , Tauopathies/genetics , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Aged , Animals , Binding Sites , Brain/metabolism , Brain/pathology , Case-Control Studies , Cell Differentiation , Disease Progression , Female , Humans , Internal Ribosome Entry Sites/genetics , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/pathology , Ribosomes/metabolism , tau Proteins/biosynthesis
...