Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(13): 36646-36662, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36550251

RESUMEN

Energy sustainability plays a crucial role in the development of any country. With the booming economy of Turkey, it is necessary to ensure energy sustainability in every sector. The residential sector plays a vital role in energy consumption in Turkey and improving sustainability in this sector can foster Turkey's development. This study introduced first-time sustainability indicators of Turkey's residential sector to determine the energy and exergy analyses through a thermodynamics-derived approach based on the data from 2000 to 2017. Monte Carlo simulations have been performed for energy source variation. Possible distribution uncertainties show that natural gas (0.78-0.76), biofuels, and waste (0.39-0.43) are dominant parameters for energy and exergy. Improvement of biofuels and waste, renewable-based energy sources can be a feasible solution for fossil fuel replacement. In Turkey's residential sector, energy efficiency varies from 27.51 to 35.65%, while exergy efficiency ranges from 25.85 to 34.06%. The sustainability index for Turkey ranges from 1.34 to 1.51. In Turkey, around 65.93 to 74.14% of fossil fuel has been depleted in the last 18 years, which leads to lesser exergetic sustainability. Inefficient cooking, heating appliances, and lighting devices lead to higher exergy loss. Therefore, this study demonstrates the exergy analysis and prediction of the upcoming consequences of this analysis. In the future, Turkey can use higher efficient devices, especially in heating, lighting, and mechanical energy-related appliances, and electricity can be used to attain higher exergetic efficiency. Performed analysis and uncertainties of parameters will assist policymakers in selecting suitable alternative strategies in Turkey's residential sector for sustainable decision-making.


Asunto(s)
Biocombustibles , Fuentes Generadoras de Energía , Turquía , Termodinámica , Combustibles Fósiles
2.
Adv Funct Mater ; 33(52)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38525448

RESUMEN

Although increasing efforts have been devoted to the development of non-invasive wearable or stretchable electrochemical sweat sensors for monitoring physiological and metabolic information, most of them still suffer from poor stability and specificity over time and fluctuating temperatures. This study reports the design and fabrication of a long-term stable and highly sensitive flexible electrochemical sensor based on nanocomposite-modified porous graphene by simple and facile laser treatment for detecting biomarkers such as glucose in sweat. The laser-reduced and patterned stable conductive nanocomposite on the porous graphene electrode provides the resulting glucose sensor with an excellent sensitivity of 1317.69 µAmM-1cm-2 with an ultra-low limit of detection (LOD) of 0.079 µM. The sensor can also detect pH and exhibit extraordinary stability to maintain more than 91% sensitivity over 21 days in ambient conditions. Taken together with a temperature sensor based on the same material system, the dual glucose and pH sensor integrated with a flexible microfluidic sweat sampling network further results in accurate continuous on-body glucose detection calibrated by the simultaneously measured pH and temperature. The low-cost, highly sensitive, and long-term stable platform could facilitate and pave the way for the early identification and continuous monitoring of different biomarkers for non-invasive disease diagnosis and treatment evaluation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...