Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Metab Lett ; 12(1): 54-61, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29521215

RESUMEN

BACKGROUND: Nitroproston is a novel prostaglandin-based compound modified by NOdonating groups with potential application in obstructive respiratory diseases such as asthma and obstructive bronchitis. Nitroproston has been extensively studied using various pharmacological models. Its biological stability is still uncertain. OBJECTIVE: The aim of the present study was to evaluate Nitroproston stability in vitro, as well as to identify and characterize its major biodegradation products. METHODS: The principal biodegradation products of Nitroproston were identified in vitro using liquid chromatography/ion trap - time-of-flight mass-spectrometry. The postulated structure of metabolites was confirmed using authentic reference standards. Rat, rabbit and human plasma and human whole blood samples were used for comparative in vitro degradation study. Nitroproston and its biodegradation products in biological samples were measured by liquid chromatography/triple -stage quadrupole mass spectrometry. RESULTS: Nitroproston is rapidly hydrolyzed in rat plasma to generate glycerol-1,3-dinitrate and prostaglandin E2. The latter can undergo conversion to cyclopentenone prostaglandins A2 and B2. Thereby less than 5% of the parent compound was observed in rat plasma at the first moment of incubation. A similar pattern was observed for rabbit plasma where half-life (T1/2) of Nitroproston was about 2.0 minutes. Nitroproston biodegradation rate for human plasma was the slowest (T1/2 = 2.1 h) among tested species, occurred more rapidly in whole blood (T1/2 = 14.8 min). CONCLUSION: It was found that Nitroproston is rapidly hydrolyzed in rodent compared to human plasma incubations. Whereas Nitroproston is relatively stable in human plasma an enhanced hydrolytic activity was observed in whole human blood incubations. Extensive metabolism of Nitroproston in human whole blood was mainly associated with red blood cells. The observed interspecies variability highlights the need of suitable animal model selection for Nitroproston follow-up PK/PD studies.


Asunto(s)
Dinoprostona/metabolismo , Estabilidad de Medicamentos , Animales , Cromatografía Líquida de Alta Presión , Dinoprostona/análogos & derivados , Dinoprostona/química , Semivida , Humanos , Microsomas Hepáticos , Conejos , Ratas , Especificidad de la Especie , Espectrometría de Masas en Tándem
2.
J Pharm Biomed Anal ; 138: 118-125, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28192719

RESUMEN

A new simple, rapid and sensitive high pressure liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated for simultaneous analysis of mebeverine metabolites as: mebeverine alcohol (MAL), mebeverine acid (MAC) and desmethylmebeverine acid (DMAC) in human plasma. Sample preparation was performed by protein precipitation following the separation of analytes using an Acquity UPLC BEN C8 column 1.7 mm 2.1×50mm (Waters, USA). 2H5-desmethylmebeverine acid (2H5-DMAC) was used as the internal standard (IS). The proposed method was validated with linear ranges of 0.1-10ng/mL; 1-100ng/mL and 5-1000ng/mL for MAL, MAC and DMAC, respectively. Accuracy for all analytes (%RE), given as deviation between nominal and measured concentration and assay variability (CV) ranged from -4.04% to 4.60% and from 0.31% to 6.43% respectively both for within- and between-run. The overall recoveries for all metabolites were above 85%. The proposed method was used successfully for analysis of real samples from a pharmacokinetics study.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fenetilaminas/sangre , Plasma/química , Espectrometría de Masas en Tándem/métodos , Humanos , Fenetilaminas/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Drug Test Anal ; 3(10): 717-23, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21964865

RESUMEN

A method is described for the determination of mesocarb abuse in equestrian sport by combining gradient liquid chromatography and electrospray ionization tandem mass spectrometry. Mesocarb was administrated orally to two horses at a dose of 50 µg/kg. Urine samples were collected up to 120 h post administration. Hydrolyzed and conjugated urine fractions were handled using liquid-liquid extraction (LLE). The identity of the parent drug and metabolites was confirmed using liquid chromatography combined with tandem mass spectrometry (MS/MS). Mesocarb and seven metabolites were detected in horse urine. Mono- and two di-hydroxylated metabolites were the main metabolites observed in horse urine samples. Based on the differences in MS/MS spectra it was supposed that these metabolites were been formed by the hydroxylation of the phenylisopropyl moiety of mesocarb whilst the main process of hydroxylation of mesocarb in human occurred in the phenylcarbamoyl moiety. The main metabolites were almost completely glucuroconjugated. Minor metabolites such as p-hydroxymesocarb and three di-hydroxylated metabolites together with parent mesocarb were also presented in the free urine fraction. This study has shown that two mono- and two di-hydroxylated metabolites are useful for controlling the abuse of mesocarb in horses.


Asunto(s)
Estimulantes del Sistema Nervioso Central/metabolismo , Doping en los Deportes , Caballos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Detección de Abuso de Sustancias/métodos , Sidnonas/metabolismo , Animales , Estimulantes del Sistema Nervioso Central/orina , Cromatografía Liquida/métodos , Caballos/orina , Sidnonas/orina , Espectrometría de Masas en Tándem/métodos
4.
Drug Test Anal ; 2(10): 475-88, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20878897

RESUMEN

The use of two separate derivatization procedures with the formation of oxime (hydroxyl ammonium pretreatment) and picolinoyl (mixed anhydride method) derivates of anabolic steroids following HPLC-MS/MS analysis was proposed. The main product ions of obtained derivatives for 21 anabolic steroids were evaluated and fragmentation pathways were compared.The analysis of MS/MS spectra for underivatized steroids versus oxime or picolinoyl derivatives showed that in case of analytes containing conjugated double bonds in sterane core all of the observed MS/MS spectra contained abundant product ions of diagnostic value. The implementation of derivatization procedures to such compounds is useful for upgrading sensitivity or selectivity of the evaluated method. On the other hand, MS/MS spectra of underivatized and oxime analytes without conjugated double bonds in sterane core produce spectra with large amounts of low abundant product ions. Picolinoyl derivatives formation leads to highly specific spectra with product ions of diagnostic value coupled with sensitive and selective analysis at the same time. The intra- and inter-group comparison analysis revealed that fragmentation pathways for underivatized steroids and correspondent oxime derivatives are similar.The obtained oxime and picolinoyl derivatives provided 10-15 times higher ESI response in the HPLC-ESI-MS-selected reaction monitoring (SRM) when compared to those of underivatized molecules in positive HPLC-ESI-MS mode.Due to the laborious sample preparation we suggest to use the performed strategy for confirmation analysis purposes, metabolic studies or while the identification of new steroids or steroid-like substances.


Asunto(s)
Anabolizantes/orina , Cromatografía Líquida de Alta Presión/métodos , Esteroides/orina , Espectrometría de Masas en Tándem/métodos , Anabolizantes/química , Humanos , Oximas/química , Sensibilidad y Especificidad , Espectrometría de Masa por Ionización de Electrospray/métodos , Esteroides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...