Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 64(3): 1030-1042, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38224368

RESUMEN

The sulfonamide function is used extensively as a general building block in various inhibitory scaffolds and, more specifically, as a zinc-binding group (ZBG) of metalloenzyme inhibitors. Here, we provide biochemical, structural, and computational characterization of a metallopeptidase in complex with inhibitors, where the mono- and bisubstituted sulfamide functions are designed to directly engage zinc ions of a bimetallic enzyme site. Structural data showed that while monosubstituted sulfamides coordinate active-site zinc ions via the free negatively charged amino group in a canonical manner, their bisubstituted counterparts adopt an atypical binding pattern divergent from expected positioning of corresponding tetrahedral reaction intermediates. Accompanying quantum mechanics calculations revealed that electroneutrality of the sulfamide function is a major factor contributing to the markedly lower potency of bisubstituted compounds by considerably lowering their interaction energy with the enzyme. Overall, while bisubstituted uncharged sulfamide functions can bolster favorable pharmacological properties of a given inhibitor, their use as ZBGs in metalloenzyme inhibitors might be less advantageous due to their suboptimal metal-ligand properties.


Asunto(s)
Metaloproteínas , Inhibidores de Proteasas , Inhibidores de Proteasas/farmacología , Metaloproteínas/química , Zinc/metabolismo , Iones
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902164

RESUMEN

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Ácidos Hidroxámicos , Oxadiazoles , Humanos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Procesamiento Proteico-Postraduccional , Acetilación , Oxadiazoles/química , Oxadiazoles/farmacología , Línea Celular Tumoral
3.
FASEB J ; 36(5): e22287, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349187

RESUMEN

Class IIa histone deacetylases (HDACs) play critical roles in vertebrate development and physiology, yet direct evidence of their intrinsic deacetylase activity and on substrate specificity regarding the peptide sequence is still missing. In this study, we designed and synthesized a combinatorial peptide library allowing us to profile class IIa HDACs sequence specificity at positions +3 through -3 from the central lysine modified by the well-accepted trifluoroacetyl function. Our data revealed a strong preference for bulky aromatic acids directly flanking the central trifluoroacetyllysine, while all class IIa HDACs disfavor positively charged residues and proline at the +1/-1 positions. The chemical nature of amino acid residues N-terminally to the central trifluoroacetyllysine has a more profound effect on substrate recognition as compared to residues located C-terminally. These findings were validated by designing selected favored and disfavored peptide sequences, with the favored ones are accepted with catalytic efficacy of 75 000 and 525 000 M-1  s-1 for HDAC7 and HDAC5, respectively. Results reported here could help in developing class IIa HDACs inhibitors and also in the search for new natural class IIa HDACs substrates.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Secuencia de Aminoácidos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Péptidos , Especificidad por Sustrato
4.
Nucleic Acids Res ; 48(19): 11130-11145, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32525981

RESUMEN

Prostate-specific membrane antigen (PSMA) is a well-characterized tumor marker associated with prostate cancer and neovasculature of most solid tumors. PSMA-specific ligands are thus being developed to deliver imaging or therapeutic agents to cancer cells. Here, we report on a crystal structure of human PSMA in complex with A9g, a 43-bp PSMA-specific RNA aptamer, that was determined to the 2.2 Å resolution limit. The analysis of the PSMA/aptamer interface allows for identification of key interactions critical for nanomolar binding affinity and high selectivity of A9g for human PSMA. Combined with in silico modeling, site-directed mutagenesis, inhibition experiments and cell-based assays, the structure also provides an insight into structural changes of the aptamer and PSMA upon complex formation, mechanistic explanation for inhibition of the PSMA enzymatic activity by A9g as well as its ligand-selective competition with small molecules targeting the internal pocket of the enzyme. Additionally, comparison with published protein-RNA aptamer structures pointed toward more general features governing protein-aptamer interactions. Finally, our findings can be exploited for the structure-assisted design of future A9g-based derivatives with improved binding and stability characteristics.


Asunto(s)
Antígenos de Superficie/química , Aptámeros de Nucleótidos/química , Glutamato Carboxipeptidasa II/química , Biomarcadores de Tumor/química , Células HEK293 , Humanos , Ligandos , Masculino , Estructura Molecular , Células PC-3 , Neoplasias de la Próstata/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
5.
J Biol Chem ; 295(9): 2614-2628, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31953325

RESUMEN

Histone deacetylase 6 (HDAC6) is a multidomain cytosolic enzyme having tubulin deacetylase activity that has been unequivocally assigned to the second of the tandem catalytic domains. However, virtually no information exists on the contribution of other HDAC6 domains on tubulin recognition. Here, using recombinant protein expression, site-directed mutagenesis, fluorimetric and biochemical assays, microscale thermophoresis, and total internal reflection fluorescence microscopy, we identified the N-terminal, disordered region of HDAC6 as a microtubule-binding domain and functionally characterized it to the single-molecule level. We show that the microtubule-binding motif spans two positively charged patches comprising residues Lys-32 to Lys-58. We found that HDAC6-microtubule interactions are entirely independent of the catalytic domains and are mediated by ionic interactions with the negatively charged microtubule surface. Importantly, a crosstalk between the microtubule-binding domain and the deacetylase domain was critical for recognition and efficient deacetylation of free tubulin dimers both in vitro and in vivo Overall, our results reveal that recognition of substrates by HDAC6 is more complex than previously appreciated and that domains outside the tandem catalytic core are essential for proficient substrate deacetylation.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Unión Proteica , Dominios Proteicos/fisiología , Especificidad por Sustrato
6.
FASEB J ; 33(3): 4035-4045, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30496698

RESUMEN

Histone deacetylase 6 (HDAC6) is a multidomain cytosolic hydrolase acting mostly on nonhistone protein substrates. Investigations of the substrate specificity of HDAC6 are confounded by the presence of 2 catalytically active deacetylase domains (DD1 and DD2). In this study, acetylome peptide microarrays and peptide libraries were used to map the substrate specificity of DD1 and DD2 of human HDAC6. The results show that DD1 is solely responsible for the deacetylation of substrates harboring the acetyllysine at their C terminus, whereas DD2 exclusively deacetylates peptides with an internal acetyllysine residue. Also, statistical analysis of the deacetylation data revealed amino acid preferences at individual positions flanking the acetyllysine, where glycine and arginine residues are favored at positions N-terminal to the central acetyllysine; negatively charged glutamate is strongly disfavored throughout the sequence. Finally, the deacylation activity of HDAC6 was profiled by using a panel of acyl derivatives of the optimized peptide substrate and showed that HDAC6 acts as a proficient deformylase. Our data thus offer a detailed insight into the substrate preferences of the individual HDAC6 domains at the peptide level, and these findings can in turn help in elucidating the biologic roles of the enzyme and facilitate the development of new domain-specific inhibitors as research tools or therapeutic agents.-Kutil, Z., Skultetyova, L., Rauh, D., Meleshin, M., Snajdr, I., Novakova, Z., Mikesova, J., Pavlicek, J., Hadzima, M., Baranova, P., Havlinova, B., Majer, P., Schutkowski, M., Barinka, C. The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries.


Asunto(s)
Dominio Catalítico , Histona Desacetilasa 6/química , Células HEK293 , Histona Desacetilasa 6/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Electricidad Estática , Especificidad por Sustrato
7.
Sci Rep ; 7(1): 11547, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912522

RESUMEN

Human histone deacetylase 6 (HDAC6) is the major deacetylase responsible for removing the acetyl group from Lys40 of α-tubulin (αK40), which is located lumenally in polymerized microtubules. Here, we provide a detailed kinetic analysis of tubulin deacetylation and HDAC6/microtubule interactions using individual purified components. Our data unequivocally show that free tubulin dimers represent the preferred HDAC6 substrate, with a K M value of 0.23 µM and a deacetylation rate over 1,500-fold higher than that of assembled microtubules. We attribute the lower deacetylation rate of microtubules to both longitudinal and lateral lattice interactions within tubulin polymers. Using TIRF microscopy, we directly visualized stochastic binding of HDAC6 to assembled microtubules without any detectable preferential binding to microtubule tips. Likewise, indirect immunofluorescence microscopy revealed that microtubule deacetylation by HDAC6 is carried out stochastically along the whole microtubule length, rather than from the open extremities. Our data thus complement prior studies on tubulin acetylation and further strengthen the rationale for the correlation between tubulin acetylation and microtubule age.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Histona Desacetilasa 6/química , Humanos , Cinética , Microscopía Fluorescente , Especificidad por Sustrato
8.
Prostate ; 77(7): 749-764, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28247415

RESUMEN

BACKGROUND: Prostate-specific membrane antigen (PSMA) is a validated target for the imaging and therapy of prostate cancer. Here, we report the detailed characterization of four novel murine monoclonal antibodies (mAbs) recognizing human PSMA as well as PSMA orthologs from different species. METHODS: Performance of purified mAbs was assayed using a comprehensive panel of in vitro experimental setups including Western blotting, immunofluorescence, immunohistochemistry, ELISA, flow cytometry, and surface-plasmon resonance. Furthermore, a mouse xenograft model of prostate cancer was used to compare the suitability of the mAbs for in vivo applications. RESULTS: All mAbs demonstrate high specificity for PSMA as documented by the lack of cross-reactivity to unrelated human proteins. The 3F11 and 1A11 mAbs bind linear epitopes spanning residues 226-243 and 271-288 of human PSMA, respectively. 3F11 is also suitable for the detection of PSMA orthologs from mouse, pig, dog, and rat in experimental setups where the denatured form of PSMA is used. 5D3 and 5B1 mAbs recognize distinct surface-exposed conformational epitopes and are useful for targeting PSMA in its native conformation. Most importantly, using a mouse xenograft model of prostate cancer we show that both the intact 5D3 and its Fab fragment are suitable for in vivo imaging. CONCLUSIONS: With apparent affinities of 0.14 and 1.2 nM as determined by ELISA and flow cytometry, respectively, 5D3 has approximately 10-fold higher affinity for PSMA than the clinically validated mAb J591 and, therefore, is a prime candidate for the development of next-generation theranostics to target PSMA. Prostate 77:749-764, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Antígenos de Superficie , Glutamato Carboxipeptidasa II , Próstata , Neoplasias de la Próstata , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales de Origen Murino/farmacología , Antígenos de Superficie/inmunología , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/inmunología , Humanos , Masculino , Ratones , Próstata/inmunología , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Nanomedicina Teranóstica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...