Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Polymers (Basel) ; 15(16)2023 Aug 09.
Article En | MEDLINE | ID: mdl-37631404

In this work, the implementation of an electrochromic device (10 cm × 10 cm in size) for energy saving applications has been presented. As electrochromic system has been used with an electrochromic solution (ECsol) made by ethyl viologen diperchlorate [EV(ClO4)2], 1,1'-diethyl ferrocene (DEFc) and propylene carbonate (PC), as solvent. The final system has been obtained by mixing the ECsol, described above, with a polymeric system made by Bisphenol-A glycerolate (1 glycerol/phenol) diacrylate (BPA) and 2,2-Dimethoxy-2-phenylacetophenone (Irgacure 651) in a weight percentage equal to 60:40% w/w, respectively. Lithography has been used to make a spacer pattern with a thickness of about 15-20 µm between the two substrates. Micro-Raman spectroscopy confirmed the presence of the EV•+ as justified by the blue color of the electrochromic device in the ON state. Electrochemical and optical properties of the electrochromic device have been studied. The device shows reversible electrochromic behavior as confirmed by cyclic color variation due to the reduction and oxidation process of the EV2+/EV•+ couple. The electrochromic device shows a variation of the % transmittance in the visible region at 400 nm of 59.6% in the OFF state and 0.48% at 3.0 V. At 606 nm the transmittance in the bleached state is 84.58% in the OFF state and then decreases to 1.01% when it is fully colored at 3.0 V. In the NIR region at 890 nm, the device shows a transmittance of 74.3% in the OFF state and 23.7% at 3.0 V while at 1165 nm the values of the transmittance changed from 83.21% in the OFF state to 1.58% in the ON state at 3.0 V. The electrochromic device shows high values of CCR% and exhibits excellent values of CE in both visible and near-infrared regions when switched between OFF/ON states. In the NIR region at 890 nm, electrochromic devices can be used for the energy-saving of buildings with a promising CE of 120.9 cm2/C and 420.1 cm2/C at 1165 nm.

2.
Biophys Chem ; 301: 107082, 2023 10.
Article En | MEDLINE | ID: mdl-37544082

Curcumin, a plant polyphenol extracted from the Chinese herb turmeric, has gained widespread attention in recent years because of its multifunctional properties as antioxidant, antinflammatory, antimicrobial, and anticancer agent. Effects of the molecule on mitochondrial membranes properties have also been evidenced. In this work, the interaction of curcumin with models of mitochondrial membranes composed of dimyristoylphosphatidylcholine (DMPC) or mixtures of DMPC and 4 mol% tetramyristoylcardiolipin (TMCL) has been investigated by using biophysical techniques. Spectrophotometry and fluorescence allowed to determine the association constant and the binding energy of curcumin with pure DMPC and mixed DMPC/TMCL aqueous bilayers. The molecular organization of pure DMPC and cardiolipin-containing Langmuir monolayers at the air-water interface were investigated and the morphology of the monolayers transferred into mica substrates were characterized through atomic force microscopy (AFM). It is found that curcumin associates at the polar/apolar interface of the lipid bilayers and the binding is favored in the presence of cardiolipin. At 2 mol%, curcumin is well miscible with lipid monolayers, particularly with mixed DMPC/TMCL ones, where compact terraces formation characterized by a reduction of the surface roughness is observed in the AFM topographic images. At 10 mol%, curcumin perturbs the stability of DMPC monolayers and morphologically are evident terraces surrounded by cur aggregates. In the presence of TMCL, very few curcumin aggregates and larger compact terraces are observed. The overall results indicate that cardiolipin augments the incorporation of curcumin in model membranes highlighting the mutual interplay cardiolipin-curcumin in mitochondrial membranes.


Cardiolipins , Curcumin , Cardiolipins/chemistry , Dimyristoylphosphatidylcholine/chemistry , Curcumin/pharmacology , Lipid Bilayers/chemistry , Microscopy, Atomic Force
3.
Front Chem ; 10: 884059, 2022.
Article En | MEDLINE | ID: mdl-35711963

The improvement of the antioxidant and antimicrobial activities of chitosan (CS) films can be realized by incorporating transition metal complexes as active components. In this context, bioactive films were prepared by embedding a newly synthesized acylpyrazolonate Zn(II) complex, [Zn(QPhtBu)2(MeOH)2], into the eco-friendly biopolymer CS matrix. Homogeneous, amorphous, flexible, and transparent CS@Znn films were obtained through the solvent casting method in dilute acidic solution, using different weight ratios of the Zn(II) complex to CS and characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman, and scanning electron microscopy (SEM) techniques. The X-ray single-crystal analysis of [Zn(QPhtBu)2(MeOH)2] and the evaluation of its intermolecular interactions with a protonated glucosamine fragment through hydrogen bond propensity (HBP) calculations are reported. The effects of the different contents of the [Zn(QPhtBu)2(MeOH)2] complex on the CS biological proprieties have been evaluated, proving that the new CS@Znn films show an improved antioxidant activity, tested according to the DPPH method, with respect to pure CS, related to the concentration of the incorporated Zn(II) complex. Finally, the CS@Znn films were tried out as antimicrobial agents, showing an increase in antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus) with respect to pure CS, when detected by the agar disk-diffusion method.

4.
Gels ; 8(6)2022 Jun 08.
Article En | MEDLINE | ID: mdl-35735707

This work describes the electrochemical properties of a type of PMMA-based gel polymer electrolytes (GPEs). The gel polymer electrolyte systems at a concentration of (20:80) % w/w were prepared from poly (methyl methacrylate), lithium perchlorate LiClO4 and single plasticizer propylene carbonate (PMMA-Li-PC) and a mixture of plasticizers made by propylene carbonate and ethylene carbonate in molar ratio 1:1, (PMMA-Li-PC-EC). Different salt concentrations (0.1 M, 0.5 M, 1 M, 2 M) were studied. The effect of different plasticizers (single and mixed) on the properties of gel polymer electrolytes were considered. The variation of conductivity versus salt concentration, thermal properties using DSC and TGA, anodic stability and FTIR spectroscopy were used in this study. The maximum ionic conductivity of σ = 0.031 S/cm were obtained for PMMA-Li-PC-EC with a salt concentration equal to 1 M. Ion-pairing phenomena and all ion associations were observed between lithium cations, plasticizers and host polymers through FTIR spectroscopy. The anodic stability of the PMMA-based gel polymer electrolytes was recorded up to 4 V. The glass temperatures of these electrolytes were estimated. We found they were dependent on the plasticization effect of plasticizers on the polymer chains and the increase of the salt concentration. Unexpectedly, it was determined that an unreacted PMMA monomer was present in the system, which appears to enhance ion conduction. The presence and possibly the addition of a monomer may be a technique for increasing ion conduction in other gel systems that warrants further study.

...