Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biometals ; 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874822

Candida species undeniably rank as the most prevalent opportunistic human fungal pathogens worldwide, with Candida albicans as the predominant representative. However, the emergence of non-albicans Candida species (NACs) has marked a significant shift, accompanied by rising incidence rates and concerning trends of antifungal resistance. The search for new strategies to combat antifungal-resistant Candida strains is of paramount importance. Recently, our research group reported the anti-Candida activity of a coordination compound containing copper(II) complexed with theophylline (theo) and 1,10-phenanthroline (phen), known as "CTP" - Cu(theo)2phen(H2O).5H2O. In the present work, we investigated the mechanisms of action of CTP against six medically relevant, antifungal-resistant NACs, including C. auris, C. glabrata, C. haemulonii, C. krusei, C. parapsilosis and C. tropicalis. CTP demonstrated significant efficacy in inhibiting mitochondrial dehydrogenases, leading to heightened intracellular reactive oxygen species production. CTP treatment resulted in substantial damage to the plasma membrane, as evidenced by the passive incorporation of propidium iodide, and induced DNA fragmentation as revealed by the TUNEL assay. Scanning electron microscopy images of post-CTP treatment NACs further illustrated profound alterations in the fungal surface morphology, including invaginations, cavitations and lysis. These surface modifications significantly impacted the ability of Candida cells to adhere to a polystyrene surface and to form robust biofilm structures. Moreover, CTP was effective in disassembling mature biofilms formed by these NACs. In conclusion, CTP represents a promising avenue for the development of novel antifungals with innovative mechanisms of action against clinically relevant NACs that are resistant to antifungals commonly used in clinical settings.

2.
Biometals ; 37(2): 321-336, 2024 Apr.
Article En | MEDLINE | ID: mdl-37917351

Candida spp. are the commonest fungal pathogens worldwide. Antifungal resistance is a problem that has prompted the discovery of novel anti-Candida drugs. Herein, 25 compounds, some of them containing copper(II), cobalt(II) and manganese(II) ions, were initially evaluated for inhibiting the growth of reference strains of Candida albicans and Candida tropicalis. Eight (32%) of the compounds inhibited the proliferation of these yeasts, displaying minimum inhibitory concentrations (MICs) ranging from 31.25 to 250 µg/mL and minimum fungicidal concentration (MFCs) from 62.5 to 250 µg/mL. Drug-likeness/pharmacokinetic calculated by SwissADME indicated that the 8 selected compounds were suitable for use as topical drugs. The complex CTP, Cu(theo)2phen(H2O).5H2O (theo = theophylline; phen = 1,10-phenanthroline), was chosen for further testing against 10 medically relevant Candida species that were resistant to fluconazole/amphotericin B. CTP demonstrated a broad spectrum of action, inhibiting the growth of all 20 clinical fungal isolates, with MICs from 7.81 to 62.5 µg/mL and MFCs from 15.62 to 62.5 µg/mL. Conversely, CTP did not cause lysis in erythrocytes. The toxicity of CTP was evaluated in vivo using Galleria mellonella and Tenebrio molitor. CTP had no or low levels of toxicity at doses ranging from 31.25 to 250 µg/mL for 5 days. After 24 h of treatment, G. mellonella larvae exhibited high survival rates even when exposed to high doses of CTP (600 µg/mL), with the 50% cytotoxic concentration calculated as 776.2 µg/mL, generating selectivity indexes varying from 12.4 to 99.4 depending on each Candida species. These findings suggest that CTP could serve as a potential drug to treat infections caused by Candida species resistant to clinically available antifungals.


Antifungal Agents , Candida , Phenanthrolines , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Copper/pharmacology , Theophylline/pharmacology , Candida albicans , Drug Resistance, Fungal , Microbial Sensitivity Tests
...