Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36987180

RESUMEN

A series of aliphatic polybenzimidazoles (PBIs) with methylene groups of varying length were synthesized by the high-temperature polycondensation of 3,3'-diaminobenzidine (DAB) and the corresponding aliphatic dicarboxylic acid in Eaton's reagent. The influence of the length of the methylene chain on PBIs' properties was investigated by solution viscometry, thermogravimetric analysis, mechanical testing and dynamic mechanical analysis. All PBIs exhibited high mechanical strength (up to 129.3 ± 7.1 MPa), glass transition temperature (≥200 °C) and thermal decomposition temperature (≥460 °C). Moreover, all of the synthesized aliphatic PBIs possess a shape-memory effect, which is a result of the presence of soft aliphatic segments and rigid bis-benzimidazole groups in the macromolecules, as well as strong intermolecular hydrogen bonds that serve as non-covalent crosslinks. Among the studied polymers, the PBI based on DAB and dodecanedioic acid has high adequate mechanical and thermal properties and demonstrates the highest shape-fixity ratio and shape-recovery ratio of 99.6% and 95.6%, respectively. Because of these properties, aliphatic PBIs have great potential to be used as high-temperature materials for application in different high-tech fields, including the aerospace industry and structural component industries.

2.
Polymers (Basel) ; 14(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36145937

RESUMEN

Chitosan (CS)/graphene nanocomposite films with tunable biomechanics, electroconductivity and biocompatibility using polyvinylpyrrolidone (PVP) and Pluronic F108 (Plu) as emulsion stabilizers for the purpose of conductive tissue engineering were successfully obtained. In order to obtain a composite solution, aqueous dispersions of multilayered graphene stabilized with Plu/PVP were supplied with CS at a ratio of CS to stabilizers of 2:1, respectively. Electroconductive films were obtained by the solution casting method. The electrical conductivity, mechanical properties and in vitro and in vivo biocompatibility of the resulting films were assessed in relation to the graphene concentration and stabilizer type and they were close to that of smooth muscle tissue. According to the results of the in vitro cytotoxicity analysis, the films did not release soluble cytotoxic components into the cell culture medium. The high adhesion of murine fibroblasts to the films indicated the absence of contact cytotoxicity. In subcutaneous implantation in Wistar rats, we found that stabilizers reduced the brittleness of the chitosan films and the inflammatory response.

3.
Polymers (Basel) ; 13(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641200

RESUMEN

A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young's modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds' low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration.

4.
Tissue Eng Part A ; 26(17-18): 953-963, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32159465

RESUMEN

We evaluated the applicability of chitosan-g-oligo(L,L-lactide) copolymer (CLC) hydrogel for central nervous system tissue engineering. The biomechanical properties of the CLC hydrogel were characterized and its biocompatibility was assessed with neural progenitor cells obtained from two different sources: H9-derived neural stem cells (H9D-NSCs) and directly reprogrammed neural precursor cells (drNPCs). Our study found that the optically transparent CLC hydrogel possessed biomechanical characteristics suitable for culturing human neural stem/precursor cells and was noncytotoxic. When seeded on films prepared from CLC copolymer hydrogel, both H9D-NSC and drNPC adhered well, expanded and exhibited signs of spontaneous differentiation. While H9D-NSC mainly preserved multipotency as shown by a high proportion of Nestin+ and Sox2+ cells and a comparatively lower expression of the neuronal markers ßIII-tubulin and MAP2, drNPCs, obtained by direct reprogramming, differentiated more extensively along the neuronal lineage. Our study indicates that the CLC hydrogel may be considered as a substrate for tissue-engineered constructs, applicable for therapy of neurodegenerative diseases. Impact statement We synthetized a chitosan-g-oligo(L,L-lactide) hydrogel that sustained multipotency of embryonic-derived neural stem cells (NSCs) and supported differentiation of directly reprogrammed NSC predominantly along the neuronal lineage. The hydrogel exhibited no cytotoxicity in vitro, both in extraction and contact cytotoxicity tests. When seeded on the hydrogel, both types of NSCs adhered well, expanded, and exhibited signs of spontaneous differentiation. The biomechanical properties of the hydrogel were similar to that of human spinal cord with incised pia mater. These data pave the way for further investigations of the hydrogel toward its applicability in central nervous system tissue engineering.


Asunto(s)
Quitosano , Hidrogeles , Células-Madre Neurales , Diferenciación Celular , Células Cultivadas , Dioxanos , Humanos , Células-Madre Neurales/citología
5.
Mar Drugs ; 17(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30634710

RESUMEN

The crustacean processing industry produces large quantities of waste by-products (up to 70%). Such wastes could be used as raw materials for producing chitosan, a polysaccharide with a unique set of biochemical properties. However, the preparation methods and the long-term stability of chitosan-based products limit their application in biomedicine. In this study, different scale structures, such as aggregates, photo-crosslinked films, and 3D scaffolds based on mechanochemically-modified chitosan derivatives, were successfully formed. Dynamic light scattering revealed that aggregation of chitosan derivatives becomes more pronounced with an increase in the number of hydrophobic substituents. Although the results of the mechanical testing revealed that the plasticity of photo-crosslinked films was 5⁻8% higher than that for the initial chitosan films, their tensile strength remained unchanged. Different types of polymer scaffolds, such as flexible and porous ones, were developed by laser stereolithography. In vivo studies of the formed structures showed no dystrophic and necrobiotic changes, which proves their biocompatibility. Moreover, the wavelet analysis was used to show that the areas of chitosan film degradation were periodic. Comparing the results of the wavelet analysis and X-ray diffraction data, we have concluded that degradation occurs within less ordered amorphous regions in the polymer bulk.


Asunto(s)
Materiales Biocompatibles , Quitosano/química , Ingeniería de Tejidos , Animales , Conformación de Carbohidratos , Quitosano/análogos & derivados , Ensayo de Materiales , Porosidad , Ratas , Ratas Wistar , Resistencia a la Tracción , Andamios del Tejido
6.
Polymers (Basel) ; 9(7)2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30970980

RESUMEN

Chitosan-g-oligolactide copolymers with relatively long oligolactide grafted chains of various stereochemical compositions have been synthetized via a solvent-free mechanochemical technique and tailored to fabricate three-dimensional hydrogels using two-photon induced microstereolithography. An effect of the characteristics of chitosan and oligolactide used for the synthesis on the grafting yield and copolymer's behavior were evaluated using fractional analysis, FTIR-spectroscopy, dynamic light scattering, and UV-spectrophotometry. The lowest copolymer yield was found for the system based on chitosan with higher molecular weight, while the samples consisting of low-molecular weight chitosan showed higher grafting degrees, which were comparable in both the cases of l,l- or l,d-oligolactide grafting. The copolymer processability in the course of two-photon stereolithography was evaluated as a function of the copolymer's characteristics and stereolithography conditions. The structure and mechanical properties of the model film samples and fabricated 3D hydrogels were studied using optical and scanning electron microscopy, as well as by using tensile and nanoindenter devices. The application of copolymer with oligo(l,d-lactide) side chains led to higher processability during two-photon stereolithography in terms of the response to the laser beam, reproduction of the digital model, and the mechanical properties of the fabricated hydrogels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA