Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849365

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Antibodies, Monoclonal , Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Animals , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Female , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Antigens, Protozoan/immunology , Rats , Antibodies, Protozoan/immunology , Antibodies, Monoclonal/immunology , Humans , Epitopes/immunology , Carrier Proteins/immunology , Carrier Proteins/metabolism
2.
Sci Rep ; 14(1): 4888, 2024 02 28.
Article En | MEDLINE | ID: mdl-38418831

Clinical immunity to malaria develops slowly after repeated episodes of infection and antibodies are essential in naturally acquired immunity against malaria. However, chronic exposure to malaria has been linked to perturbation in B-cell homeostasis with the accumulation of atypical memory B cells. It is unclear how perturbations in B cell subsets influence antibody breadth, avidity, and function in individuals naturally exposed to malaria. We show that individuals living in high malaria transmission regions in Ghana have higher Plasmodium falciparum merozoite antigen-specific antibodies and an increased antibody breadth score but lower antibody avidities relative to low transmission regions. The frequency of circulating atypical memory B cells is positively associated with an individual's antibody breadth. In vitro growth inhibition is independent of the ability to bind to free merozoites but associated with the breadth of antibody reactivity in an individual. Taken together, our data shows that repeated malaria episodes hamper the development of high avid antibodies which is compensated for by an increase in antibody breadth. Our results provide evidence to reinforce the idea that in regions with high malaria prevalence, repeated malaria infections lead to the broadening of antibody diversity and the continued presence of atypical memory B cell populations.


Malaria, Falciparum , Malaria , Adult , Animals , Humans , Malaria, Falciparum/epidemiology , Memory B Cells , Antigens, Protozoan , Antibodies, Protozoan , Plasmodium falciparum , Merozoites , Protozoan Proteins
3.
Immun Inflamm Dis ; 11(6): e910, 2023 06.
Article En | MEDLINE | ID: mdl-37382252

BACKGROUND: The development of vaccine candidates for COVID-19, and the administration of booster vaccines, has meant a significant reduction in COVID-19 related deaths world-wide and the easing of global restrictions. However, new variants of SARS-CoV-2 have emerged with less susceptibility to vaccine induced immunity leading to breakthrough infections among vaccinated people. It is generally acknowledged that immunoglobulins play the major role in immune-protection, primarily through binding to the SARS-COV-2 receptor binding domain (RBD) and thereby inhibiting viral binding to the ACE2 receptor. However, there are limited investigations of anti-RBD isotypes (IgM, IgG, IgA) and IgG subclasses (IgG1-4) over the course of vaccination and breakthrough infection. METHOD: In this study, SARS-CoV-2 humoral immunity is examined in a single subject with unique longitudinal sampling. Over a two year period, the subject received three doses of vaccine, had two active breakthrough infections and 22 blood samples collected. Serological testing included anti-nucleocapsid total antibodies, anti-RBD total antibodies, IgG, IgA, IgM and IgG subclasses, neutralization and ACE2 inhibition against the wildtype (WT), Delta and Omicron variants. RESULTS: Vaccination and breakthrough infections induced IgG, specifically IgG1 and IgG4 as well as IgM and IgA. IgG1 and IgG4 responses were cross reactive and associated with broad inhibition. CONCLUSION: The findings here provide novel insights into humoral immune response characteristics associated with SARS-CoV-2 breakthrough infections.


COVID-19 , SARS-CoV-2 , Humans , Immunity, Humoral , Angiotensin-Converting Enzyme 2 , Immunoglobulin G , Immunoglobulin A , Immunoglobulin M
4.
Trends Parasitol ; 39(3): 160-162, 2023 03.
Article En | MEDLINE | ID: mdl-36682939

The Plasmodium falciparum invasion complex - consisting of the prime blood-stage vaccine candidates PfRH5, PfCyRPA and PfRipr - is essential and conserved. New data from Scally et al. reveal that the complex consists of two additional proteins, adding important knowledge to the current understanding of the biology behind the invasion process.


Malaria Vaccines , Malaria, Falciparum , Humans , Plasmodium falciparum , Protozoan Proteins/metabolism , Antigens, Protozoan/metabolism , Carrier Proteins/metabolism , Antibodies, Protozoan , Erythrocytes , Malaria, Falciparum/prevention & control
5.
PLoS Pathog ; 18(11): e1010924, 2022 11.
Article En | MEDLINE | ID: mdl-36383559

Malaria during pregnancy is a major global health problem caused by infection with Plasmodium falciparum parasites. Severe effects arise from the accumulation of infected erythrocytes in the placenta. Here, erythrocytes infected by late blood-stage parasites adhere to placental chondroitin sulphate A (CS) via VAR2CSA-type P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. Immunity to placental malaria is acquired through exposure and mediated through antibodies to VAR2CSA. Through evolution, the VAR2CSA proteins have diversified in sequence to escape immune recognition but retained their overall macromolecular structure to maintain CS binding affinity. This structural conservation may also have allowed development of broadly reactive antibodies to VAR2CSA in immune women. Here we show the negative stain and cryo-EM structure of the only known broadly reactive human monoclonal antibody, PAM1.4, in complex with VAR2CSA. The data shows how PAM1.4's broad VAR2CSA reactivity is achieved through interactions with multiple conserved residues of different sub-domains forming conformational epitope distant from the CS binding site on the VAR2CSA core structure. Thus, while PAM1.4 may represent a class of antibodies mediating placental malaria immunity by inducing phagocytosis or NK cell-mediated cytotoxicity, it is likely that broadly CS binding-inhibitory antibodies target other epitopes at the CS binding site. Insights on both types of broadly reactive monoclonal antibodies may aid the development of a vaccine against placental malaria.


Malaria, Falciparum , Malaria , Humans , Female , Pregnancy , Antigens, Protozoan , Malaria, Falciparum/parasitology , Epitopes , Antibodies, Protozoan , Antibodies, Monoclonal , Cryoelectron Microscopy , Placenta/metabolism , Plasmodium falciparum/metabolism , Erythrocytes/parasitology , Chondroitin Sulfates/metabolism
6.
Viruses ; 14(9)2022 08 24.
Article En | MEDLINE | ID: mdl-36146667

The development of vaccine candidates for COVID-19 has been rapid, and those that are currently approved display high efficacy against the original circulating strains. However, recently, new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged with increased transmission rates and less susceptibility to vaccine induced immunity. A greater understanding of protection mechanisms, including antibody longevity and cross-reactivity towards the variants of concern (VoCs), is needed. In this study, samples collected in Denmark early in the pandemic from paucisymptomatic subjects (n = 165) and symptomatic subjects (n = 57) infected with SARS-CoV-2 were used to assess IgG binding and inhibition in the form of angiotensin-converting enzyme 2 receptor (ACE2) competition against the wild-type and four SARS-CoV-2 VoCs (Alpha, Beta, Gamma, and Omicron). Antibodies induced early in the pandemic via natural infection were cross-reactive and inhibited ACE2 binding of the VoC, with reduced inhibition observed for the Omicron variant. When examined longitudinally, sustained cross-reactive inhibitory responses were found to exist in naturally infected paucisymptomatic subjects. After vaccination, receptor binding domain (RBD)-specific IgG binding increased by at least 3.5-fold and inhibition of ACE2 increased by at least 2-fold. When vaccination regimens were compared (two doses of Pfizer-BioNTech BNT162b2 (n = 50), or one dose of Oxford-AstraZeneca ChAdOx1 nCoV-19 followed by Pfizer-BioNTech BNT162b2 (ChAd/BNT) (n = 15)), higher levels of IgG binding and inhibition were associated with mix and match (ChAd/BNT) prime-boosting and time since vaccination. These results are particularly relevant for countries where vaccination levels are low.


COVID-19 , Pandemics , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
7.
Methods Mol Biol ; 2470: 391-405, 2022.
Article En | MEDLINE | ID: mdl-35881361

The PfEMP1 family of proteins expressed on the Plasmodium falciparum-infected erythrocyte (IE) surface is the main target of naturally acquired immunity against malaria. Antibodies capable of opsonizing the IEs and blocking the binding between PfEMP1 and human receptors seems to be one of the main protective mechanisms of the naturally acquired immunity. Therefore this family of antigens is intensively studied. Monoclonal antibodies (mAbs) are a very valuable research tool for studying this diverse family of proteins and their interaction with human receptors. As examples, mAbs can be used to identify protective epitopes, epitopes that are targets of cross-reactive antibodies, and the surface expression of specific PfEMP1 variants. Fusing mouse splenocytes with myeloma cells to generate long-lived antibody secreting hybridoma cell lines have been used since the 1970s for the production of mAbs. In this chapter, we describe a simple, reliable, and relatively fast method for producing PfEMP1-specific mAbs from mouse spleen cells using semisolid HAT selection medium.


Malaria, Falciparum , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Protozoan , Antigens, Protozoan , Epitopes/metabolism , Erythrocytes/metabolism , Humans , Immunosuppressive Agents , Mice , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism
8.
Methods Mol Biol ; 2470: 407-421, 2022.
Article En | MEDLINE | ID: mdl-35881362

Plasmodium falciparum parasites express variable surface antigens on the infected erythrocyte surface allowing adhesion to human host receptors on the blood and endothelial cells, which can result in immune evasion. One of the most studied and key antigens in adhesion is the highly polymorphic PfEMP1. However, despite the vast variation in the PfEMP1 antigens, they are the main targets of naturally acquired immunity and are therefore promising candidates for malaria vaccine development. Generating PfEMP1-specific human monoclonal antibodies from naturally immune individuals will help to determine the best targets of protection from clinical disease. Immortalization of human B cells is one of the oldest and most efficient techniques to generate human monoclonal antibodies. Nevertheless, most protocols require flow cytometry-based cell sorting, which can be a limiting factor for many laboratories. This chapter describes an efficient protocol for the generation of PfEMP1-specific human monoclonal antibodies from malaria immune individuals that can be performed without the use of advanced cell-sorting techniques.


Malaria, Falciparum , Malaria , Antibodies, Monoclonal , Antibodies, Protozoan , Antigens, Protozoan , Endothelial Cells , Erythrocytes/parasitology , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum , Protozoan Proteins
9.
Sci Rep ; 12(1): 3040, 2022 02 23.
Article En | MEDLINE | ID: mdl-35197516

The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.


Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/isolation & purification , Antibodies, Protozoan/chemistry , Antigens, Protozoan/immunology , Carrier Proteins/immunology , Cell Line , Drug Synergism , Epitopes/chemistry , Epitopes/immunology , Humans , Malaria Vaccines/chemistry , Malaria, Falciparum/prevention & control , Merozoites/immunology , Mice , Protein Binding , Protozoan Proteins/biosynthesis , Protozoan Proteins/chemistry , Protozoan Proteins/isolation & purification
10.
Front Immunol ; 12: 716305, 2021.
Article En | MEDLINE | ID: mdl-34447381

The highly conserved Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) is a key target for next-generation vaccines against blood-stage malaria. PfCyRPA constitute the core of a ternary complex, including the reticulocyte binding-like homologous protein 5 (PfRh5) and the Rh5-interacting protein (PfRipr), and is fundamental for merozoite invasion of erythrocytes. In this study, we show that monoclonal antibodies (mAbs) specific to PfCyRPA neutralize the in vitro growth of Ghanaian field isolates as well as numerous laboratory-adapted parasite lines. We identified subsets of mAbs with neutralizing activity that bind to distinct sites on PfCyRPA and that in combination potentiate the neutralizing effect. As antibody responses against multiple merozoite invasion proteins are thought to improve the efficacy of blood-stage vaccines, we also demonstrated that combinations of PfCyRPA- and PfRh5 specific mAbs act synergistically to neutralize parasite growth. Yet, we identified prominent strain-dependent neutralization potencies, which our results suggest is independent of PfCyRPA expression level and polymorphism, demonstrating the importance of addressing functional converseness when evaluating blood-stage vaccine candidates. Finally, our results suggest that blood-stage vaccine efficacy can be improved by directing the antibody response towards defined protective epitopes on multiple parasite antigens.


Antibodies, Monoclonal/immunology , Antigens, Protozoan/immunology , Erythrocytes/parasitology , Host-Parasite Interactions/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Antigenic Variation/genetics , Dose-Response Relationship, Immunologic , Epitopes/immunology , Humans , Malaria Vaccines , Mice , Neutralization Tests , Plasmodium falciparum/growth & development , Protein Binding/immunology , Recombinant Proteins/immunology , Vaccine Efficacy
11.
Med ; 2(6): 701-719.e19, 2021 06 11.
Article En | MEDLINE | ID: mdl-34223402

BACKGROUND: Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS: We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS: The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 µg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS: Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING: This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.


Malaria Vaccines , Malaria, Falciparum , Malaria , Adult , Humans , Malaria/chemically induced , Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Vaccination , Vaccines, Synthetic
12.
Cell Rep Med ; 2(3): 100207, 2021 03 16.
Article En | MEDLINE | ID: mdl-33763653

Interactions between B cells and CD4+ T follicular helper (Tfh) cells are key determinants of humoral responses. Using samples from clinical trials performed with the malaria vaccine candidate antigen Plasmodium falciparum merozoite protein (PfRH5), we compare the frequency, phenotype, and gene expression profiles of PfRH5-specific circulating Tfh (cTfh) cells elicited by two leading human vaccine delivery platforms: heterologous viral vector prime boost and protein with AS01B adjuvant. We demonstrate that the protein/AS01B platform induces a higher-magnitude antigen-specific cTfh cell response and that this correlates with peak anti-PfRH5 IgG concentrations, frequency of PfRH5-specific memory B cells, and antibody functionality. Furthermore, our data indicate a greater Th2/Tfh2 skew within the polyfunctional response elicited following vaccination with protein/AS01B as compared to a Th1/Tfh1 skew with viral vectors. These data highlight the impact of vaccine platform on the cTfh cell response driving humoral immunity, associating a high-magnitude, Th2-biased cTfh response with potent antibody production.


Antibodies, Protozoan/biosynthesis , Carrier Proteins/immunology , Immunity, Humoral/drug effects , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Adolescent , Adult , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Carrier Proteins/administration & dosage , Carrier Proteins/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/immunology , Humans , Immunogenicity, Vaccine , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Lipid A/administration & dosage , Lipid A/analogs & derivatives , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Receptors, CXCR5/genetics , Receptors, CXCR5/immunology , Saponins/administration & dosage , T Follicular Helper Cells/cytology , T Follicular Helper Cells/immunology , Th2 Cells/cytology , Th2 Cells/immunology , Vaccination , Vaccines, Subunit , Vaccinia virus/genetics , Vaccinia virus/immunology
13.
PLoS One ; 15(12): e0243943, 2020.
Article En | MEDLINE | ID: mdl-33332459

Developing a vaccine against Plasmodium falciparum malaria has been challenging, primarily due to high levels of antigen polymorphism and a complex parasite lifecycle. Immunization with the P. falciparum merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 has been shown to give rise to growth inhibitory and synergistic antisera. Therefore, these five merozoite proteins are considered to be promising candidates for a second-generation multivalent malaria vaccine. Nevertheless, little is known about IgG and IgM responses to these antigens in populations that are naturally exposed to P. falciparum. In this study, serum samples from clinically immune adults and malaria exposed children from Ghana were studied to compare levels of IgG and IgM specific for PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5. All five antigens were found to be specifically recognized by both IgM and IgG in serum from clinically immune adults and from children with malaria. Longitudinal analysis of the latter group showed an early, transient IgM response that was followed by IgG, which peaked 14 days after the initial diagnosis. IgG levels and parasitemia did not correlate, whereas parasitemia was weakly positively correlated with IgM levels. These findings show that IgG and IgM specific for merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 are high in children during P. falciparum malaria, but that the IgM induction and decline occurs earlier in infection than that of IgG.


Immunoglobulin G/immunology , Immunoglobulin M/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Aged , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Humans , Infant , Malaria Vaccines/immunology , Malaria, Falciparum/parasitology , Male , Merozoites/immunology , Merozoites/pathogenicity , Middle Aged , Plasmodium falciparum/pathogenicity , Young Adult
14.
mBio ; 11(5)2020 09 08.
Article En | MEDLINE | ID: mdl-32900802

Plasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins, CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA, and RIPR can inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or noninhibitory for RH5 binding. Using a Fab fragment as a crystallization chaperone, we determined the crystal structure of the RH5 binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site-directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in guiding the development of blood-stage malaria vaccines that target RH5.IMPORTANCE Malaria is a deadly infectious disease primarily caused by the parasite Plasmodium falciparum It remains a major global health problem, and there is no highly effective vaccine. A parasite protein called RH5 is centrally involved in the invasion of host red blood cells, making it-and the other parasite proteins it interacts with-promising vaccine targets. We recently identified a protein called P113 that binds RH5, suggesting that it anchors RH5 to the parasite surface. In this paper, we use structural biology to locate and characterize the RH5 binding region on P113. These findings will be important to guide the development of new antimalarial vaccines to ultimately prevent this disease, which affects some of the poorest people on the planet.


Carrier Proteins/metabolism , Cysteine/metabolism , Plasmodium falciparum/metabolism , Protein Domains , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Animals , Antibodies, Monoclonal/metabolism , Binding Sites , Cysteine/analysis , Erythrocytes/parasitology , Female , Malaria/parasitology , Mice , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Protein Binding , Protozoan Proteins/immunology
15.
Front Immunol ; 10: 1254, 2019.
Article En | MEDLINE | ID: mdl-31214195

The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.


Erythrocytes/immunology , Erythrocytes/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Merozoites/immunology , Plasmodium falciparum/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Antibody Specificity/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Female , Humans , Immunoglobulin G/immunology , Malaria, Falciparum/prevention & control , Mice , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Polymorphism, Genetic , Protozoan Proteins/genetics , Protozoan Proteins/immunology
17.
PLoS One ; 13(6): e0198371, 2018.
Article En | MEDLINE | ID: mdl-29883485

Plasmodium falciparum PfRH5 protein binds Ripr, CyRPA and Pf113 to form a complex that is essential for merozoite invasion of erythrocytes. The inter-genomic conservation of the PfRH5 complex proteins makes them attractive blood stage vaccine candidates. However, little is known about how antibodies to PfRH5, CyRPA and Pf113 are acquired and maintained in naturally exposed populations, and the role of PfRH5 complex proteins in naturally acquired immunity. To provide such data, we studied 206 Ghanaian children between the ages of 1-12 years, who were symptomatic, asymptomatic or aparasitemic and healthy. Plasma levels of antigen-specific IgG and IgG subclasses were measured by ELISA at several time points during acute disease and convalescence. On the day of admission with acute P. falciparum malaria, the prevalence of antibodies to PfRH5-complex proteins was low compared to other merozoite antigens (EBA175, GLURP-R0 and GLURP-R2). At convalescence, the levels of RH5-complex-specific IgG were reduced, with the decay of PfRH5-specific IgG being slower than the decay of IgG specific for CyRPA and Pf113. No correlation between IgG levels and protection against P. falciparum malaria was observed for any of the PfRH5 complex proteins. From this we conclude that specific IgG was induced against proteins from the PfRH5-complex during acute P. falciparum malaria, but the prevalence was low and the IgG levels decayed rapidly after treatment. These data indicate that the levels of IgG specific for PfRH5-complex proteins in natural infections in Ghanaian children were markers of recent exposure only.


Antibodies, Protozoan/blood , Antigens, Protozoan/metabolism , Carrier Proteins/metabolism , Malaria, Falciparum/immunology , Multiprotein Complexes/immunology , Child , Child, Preschool , Female , Ghana , Humans , Immunoglobulin G/blood , Infant , Kinetics , Malaria, Falciparum/blood , Male , Protozoan Proteins/metabolism
18.
JCI Insight ; 2(21)2017 11 02.
Article En | MEDLINE | ID: mdl-29093263

The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing.


Antibodies, Neutralizing , Carrier Proteins/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Vaccination , Adaptive Immunity , Adult , Antibodies, Protozoan/blood , Carrier Proteins/genetics , Epitopes/immunology , Female , Genetic Vectors , Humans , Immunization , Male , Middle Aged , Plasmodium falciparum/genetics , Vaccinia virus , Young Adult
19.
Proc Natl Acad Sci U S A ; 114(5): 998-1002, 2017 01 31.
Article En | MEDLINE | ID: mdl-28096331

Many promising vaccine candidates from pathogenic viruses, bacteria, and parasites are unstable and cannot be produced cheaply for clinical use. For instance, Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is essential for erythrocyte invasion, is highly conserved among field isolates, and elicits antibodies that neutralize in vitro and protect in an animal model, making it a leading malaria vaccine candidate. However, functional RH5 is only expressible in eukaryotic systems and exhibits moderate temperature tolerance, limiting its usefulness in hot and low-income countries where malaria prevails. Current approaches to immunogen stabilization involve iterative application of rational or semirational design, random mutagenesis, and biochemical characterization. Typically, each round of optimization yields minor improvement in stability, and multiple rounds are required. In contrast, we developed a one-step design strategy using phylogenetic analysis and Rosetta atomistic calculations to design PfRH5 variants with improved packing and surface polarity. To demonstrate the robustness of this approach, we tested three PfRH5 designs, all of which showed improved stability relative to wild type. The best, bearing 18 mutations relative to PfRH5, expressed in a folded form in bacteria at >1 mg of protein per L of culture, and had 10-15 °C higher thermal tolerance than wild type, while also retaining ligand binding and immunogenic properties indistinguishable from wild type, proving its value as an immunogen for a future generation of vaccines against the malaria blood stage. We envision that this efficient computational stability design methodology will also be used to enhance the biophysical properties of other recalcitrant vaccine candidates from emerging pathogens.


Antigens, Protozoan/chemistry , Carrier Proteins/chemistry , Malaria Vaccines/immunology , Plasmodium falciparum/chemistry , Protein Engineering/methods , Algorithms , Amino Acid Substitution , Animals , Antibodies, Protozoan/biosynthesis , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Basigin/metabolism , Carrier Proteins/genetics , Carrier Proteins/immunology , Cloning, Molecular , Computational Biology/methods , Drug Design , Hot Temperature , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Mutagenesis, Site-Directed , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Protein Conformation , Protein Folding , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Sequence Alignment , Vaccines, Subunit/immunology
20.
mBio ; 6(5): e01456-15, 2015 Oct 06.
Article En | MEDLINE | ID: mdl-26443460

UNLABELLED: Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate the relationship between the densities of these IE surface knobs and the PfEMP1 variant expressed, we used specific antibody panning to generate three sublines of the P. falciparum clone IT4, which expresses the PfEMP1 variants IT4VAR04, IT4VAR32b, and IT4VAR60. The knob density in each subline was then determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and compared to PfEMP1 and knob-associated histidine-rich protein (KAHRP) expression. Selection for uniform expression of IT4VAR04 produced little change in knob density, compared to unselected IEs. In contrast, selection for IT4VAR32b expression increased knob density approximately 3-fold, whereas IEs selected for IT4VAR60 expression were essentially knobless. When IT4VAR60(+) IEs were subsequently selected to express IT4VAR04 or IT4VAR32b, they again displayed low and high knob densities, respectively. All sublines expressed KAHRP regardless of the PfEMP1 expressed. Our study documents for the first time that knob density is related to the PfEMP1 variant expressed. This may reflect topological requirements to ensure optimal adhesive properties of the IEs. IMPORTANCE: Infections with Plasmodium falciparum malaria parasites are still responsible for many deaths, especially among children and pregnant women. New interventions are needed to reduce severe illness and deaths caused by this malaria parasite. Thus, a better understanding of the mechanisms behind the pathogenesis is essential. A main reason why Plasmodium falciparum malaria is more severe than disease caused by other malaria species is its ability to express variant antigens on the infected erythrocyte surface. These antigens are presented on membrane protrusions known as knobs. This study set out to investigate the interplay between different variant antigens on the surface of P. falciparum-infected erythrocytes and the density of the knobs on which the antigens are expressed. Such a direct analysis of this relationship has not been reported before but adds to the important understanding of the complexity of malaria antigen presentation.


Cell Surface Extensions/ultrastructure , Erythrocytes/parasitology , Host-Pathogen Interactions , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism , Erythrocytes/ultrastructure , Gene Expression , Humans , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
...