Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chaos ; 33(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486668

RESUMEN

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.

2.
Sci Rep ; 13(1): 1309, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693872

RESUMEN

In this work, we ask for and answer what makes classical temporal-difference reinforcement learning with [Formula: see text]-greedy strategies cooperative. Cooperating in social dilemma situations is vital for animals, humans, and machines. While evolutionary theory revealed a range of mechanisms promoting cooperation, the conditions under which agents learn to cooperate are contested. Here, we demonstrate which and how individual elements of the multi-agent learning setting lead to cooperation. We use the iterated Prisoner's dilemma with one-period memory as a testbed. Each of the two learning agents learns a strategy that conditions the following action choices on both agents' action choices of the last round. We find that next to a high caring for future rewards, a low exploration rate, and a small learning rate, it is primarily intrinsic stochastic fluctuations of the reinforcement learning process which double the final rate of cooperation to up to 80%. Thus, inherent noise is not a necessary evil of the iterative learning process. It is a critical asset for the learning of cooperation. However, we also point out the trade-off between a high likelihood of cooperative behavior and achieving this in a reasonable amount of time. Our findings are relevant for purposefully designing cooperative algorithms and regulating undesired collusive effects.


Asunto(s)
Teoría del Juego , Aprendizaje , Animales , Humanos , Refuerzo en Psicología , Algoritmos , Conducta Cooperativa , Dilema del Prisionero
3.
Phys Rev E ; 105(3-1): 034409, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35428165

RESUMEN

Assessing the systemic effects of uncertainty that arises from agents' partial observation of the true states of the world is critical for understanding a wide range of scenarios, from navigation and foraging behavior to the provision of renewable resources and public infrastructures. Yet previous modeling work on agent learning and decision-making either lacks a systematic way to describe this source of uncertainty or puts the focus on obtaining optimal policies using complex models of the world that would impose an unrealistically high cognitive demand on real agents. In this work we aim to efficiently describe the emergent behavior of biologically plausible and parsimonious learning agents faced with partially observable worlds. Therefore we derive and present deterministic reinforcement learning dynamics where the agents observe the true state of the environment only partially. We showcase the broad applicability of our dynamics across different classes of partially observable agent-environment systems. We find that partial observability creates unintuitive benefits in several specific contexts, pointing the way to further research on a general understanding of such effects. For instance, partially observant agents can learn better outcomes faster, in a more stable way, and even overcome social dilemmas. Furthermore, our method allows the application of dynamical systems theory to partially observable multiagent leaning. In this regard we find the emergence of catastrophic limit cycles, a critical slowing down of the learning processes between reward regimes, and the separation of the learning dynamics into fast and slow directions, all caused by partial observability. Therefore, the presented dynamics have the potential to become a formal, yet practical, lightweight and robust tool for researchers in biology, social science, and machine learning to systematically investigate the effects of interacting partially observant agents.

4.
Neural Comput Appl ; 34(3): 1653-1671, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221541

RESUMEN

A dynamical systems perspective on multi-agent learning, based on the link between evolutionary game theory and reinforcement learning, provides an improved, qualitative understanding of the emerging collective learning dynamics. However, confusion exists with respect to how this dynamical systems account of multi-agent learning should be interpreted. In this article, I propose to embed the dynamical systems description of multi-agent learning into different abstraction levels of cognitive analysis. The purpose of this work is to make the connections between these levels explicit in order to gain improved insight into multi-agent learning. I demonstrate the usefulness of this framework with the general and widespread class of temporal-difference reinforcement learning. I find that its deterministic dynamical systems description follows a minimum free-energy principle and unifies a boundedly rational account of game theory with decision-making under uncertainty. I then propose an on-line sample-batch temporal-difference algorithm which is characterized by the combination of applying a memory-batch and separated state-action value estimation. I find that this algorithm serves as a micro-foundation of the deterministic learning equations by showing that its learning trajectories approach the ones of the deterministic learning equations under large batch sizes. Ultimately, this framework of embedding a dynamical systems description into different abstraction levels gives guidance on how to unleash the full potential of the dynamical systems approach to multi-agent learning.

5.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34155097

RESUMEN

Collective behavior provides a framework for understanding how the actions and properties of groups emerge from the way individuals generate and share information. In humans, information flows were initially shaped by natural selection yet are increasingly structured by emerging communication technologies. Our larger, more complex social networks now transfer high-fidelity information over vast distances at low cost. The digital age and the rise of social media have accelerated changes to our social systems, with poorly understood functional consequences. This gap in our knowledge represents a principal challenge to scientific progress, democracy, and actions to address global crises. We argue that the study of collective behavior must rise to a "crisis discipline" just as medicine, conservation, and climate science have, with a focus on providing actionable insight to policymakers and regulators for the stewardship of social systems.


Asunto(s)
Conducta , Conducta Cooperativa , Internacionalidad , Algoritmos , Comunicación , Humanos , Red Social
6.
Proc Natl Acad Sci U S A ; 117(23): 12915-12922, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32434908

RESUMEN

We will need collective action to avoid catastrophic climate change, and this will require valuing the long term as well as the short term. Shortsightedness and uncertainty have hindered progress in resolving this collective action problem and have been recognized as important barriers to cooperation among humans. Here, we propose a coupled social-ecological dilemma to investigate the interdependence of three well-identified components of this cooperation problem: 1) timescales of collapse and recovery in relation to time preferences regarding future outcomes, 2) the magnitude of the impact of collapse, and 3) the number of actors in the collective. We find that, under a sufficiently severe and time-distant collapse, how much the actors care for the future can transform the game from a tragedy of the commons into one of coordination, and even into a comedy of the commons in which cooperation dominates. Conversely, we also find conditions under which even strong concern for the future still does not transform the problem from tragedy to comedy. For a large number of participating actors, we find that the critical collapse impact, at which these game regime changes happen, converges to a fixed value of collapse impact per actor that is independent of the enhancement factor of the public good, which is usually regarded as the driver of the dilemma. Our results not only call for experimental testing but also help explain why polarization in beliefs about human-caused climate change can threaten global cooperation agreements.

7.
Soft Matter ; 15(42): 8566-8577, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31637393

RESUMEN

Assemblies of anisotropic particles commonly appear in studies of active many-body systems. However, in two dimensions, the geometric ramifications of the finite density of such objects are not entirely understood. To fully characterize these effects, we perform an in-depth study of random assemblies generated by a slow compression of frictionless elliptical particles. The obtained configurations are then analysed using the Set Voronoi tessellation, which takes the particle shape into account. Not only do we analyse most scalar and vectorial morphological measures, which are commonly discussed in the literature or which have recently been addressed in experiments, but we also systematically explore the correlations between them. While in a limited range of parameters similarities with findings in 3D assemblies could be identified, important differences are found when a broad range of aspect ratios and packing fractions are considered. The data discussed in this study should thus provide a unique reference set such that geometric effects and differences from random assemblies could be clearly identified in more complex systems, including ones with soft and active particles that are typically found in biological systems.

8.
Phys Rev E ; 99(4-1): 043305, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31108579

RESUMEN

Reinforcement learning in multiagent systems has been studied in the fields of economic game theory, artificial intelligence, and statistical physics by developing an analytical understanding of the learning dynamics (often in relation to the replicator dynamics of evolutionary game theory). However, the majority of these analytical studies focuses on repeated normal form games, which only have a single environmental state. Environmental dynamics, i.e., changes in the state of an environment affecting the agents' payoffs has received less attention, lacking a universal method to obtain deterministic equations from established multistate reinforcement learning algorithms. In this work we present a methodological extension, separating the interaction from the adaptation timescale, to derive the deterministic limit of a general class of reinforcement learning algorithms, called temporal difference learning. This form of learning is equipped to function in more realistic multistate environments by using the estimated value of future environmental states to adapt the agent's behavior. We demonstrate the potential of our method with the three well-established learning algorithms Q learning, SARSA learning, and actor-critic learning. Illustrations of their dynamics on two multiagent, multistate environments reveal a wide range of different dynamical regimes, such as convergence to fixed points, limit cycles, and even deterministic chaos.

9.
Chaos ; 29(12): 123122, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31893656

RESUMEN

Increasingly complex nonlinear World-Earth system models are used for describing the dynamics of the biophysical Earth system and the socioeconomic and sociocultural World of human societies and their interactions. Identifying pathways toward a sustainable future in these models for informing policymakers and the wider public, e.g., pathways leading to robust mitigation of dangerous anthropogenic climate change, is a challenging and widely investigated task in the field of climate research and broader Earth system science. This problem is particularly difficult when constraints on avoiding transgressions of planetary boundaries and social foundations need to be taken into account. In this work, we propose to combine recently developed machine learning techniques, namely, deep reinforcement learning (DRL), with classical analysis of trajectories in the World-Earth system. Based on the concept of the agent-environment interface, we develop an agent that is generally able to act and learn in variable manageable environment models of the Earth system. We demonstrate the potential of our framework by applying DRL algorithms to two stylized World-Earth system models. Conceptually, we explore thereby the feasibility of finding novel global governance policies leading into a safe and just operating space constrained by certain planetary and socioeconomic boundaries. The artificially intelligent agent learns that the timing of a specific mix of taxing carbon emissions and subsidies on renewables is of crucial relevance for finding World-Earth system trajectories that are sustainable in the long term.

10.
Nat Commun ; 9(1): 2354, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907743

RESUMEN

Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.

11.
Phys Rev E ; 94(6-1): 062306, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085404

RESUMEN

We introduce a methodology to construct parsimonious probabilistic models. This method makes use of information filtering networks to produce a robust estimate of the global sparse inverse covariance from a simple sum of local inverse covariances computed on small subparts of the network. Being based on local and low-dimensional inversions, this method is computationally very efficient and statistically robust, even for the estimation of inverse covariance of high-dimensional, noisy, and short time series. Applied to financial data our method results are computationally more efficient than state-of-the-art methodologies such as Glasso producing, in a fraction of the computation time, models that can have equivalent or better performances but with a sparser inference structure. We also discuss performances with sparse factor models where we notice that relative performances decrease with the number of factors. The local nature of this approach allows us to perform computations in parallel and provides a tool for dynamical adaptation by partial updating when the properties of some variables change without the need of recomputing the whole model. This makes this approach particularly suitable to handle big data sets with large numbers of variables. Examples of practical application for forecasting, stress testing, and risk allocation in financial systems are also provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...