Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63
1.
Commun Biol ; 7(1): 60, 2024 01 08.
Article En | MEDLINE | ID: mdl-38191671

Homozygosity for the ε4 allele of APOE increases the odds of developing Alzheimer's by 12 to 15 times relative to the most common ε3;ε3 genotype, and its association with higher plaque loads comports with evidence that APOEε4 compromises autophagy. The ApoE4 protein specifically binds a cis element ("CLEAR") in the promoters of several autophagy genes to block their transcription. We used a multifaceted approach to identify a druggable site in ApoE4, and virtual screening of lead-like compounds identified small molecules that specifically bind to this site to impede ApoE4::DNA binding. We validated these molecules both in vitro and in vivo with models expressing ApoE4, including ApoE4 targeted-replacement mice. One compound was able to significantly restore transcription of several autophagy genes and protected against amyloid-like aggregation in a C. elegans AD model. Together, these findings provide proof-of-principle evidence for pharmacological remediation of lysosomal autophagy by ApoE4 via ApoE4-targeted lead molecules that represent a novel tack on neurodegenerative disorders.


Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Caenorhabditis elegans/genetics , Autophagy , Lysosomes
2.
J Neuroinflammation ; 20(1): 292, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38057869

Neuroinflammation appears to involve some degree of excitotoxicity promulgated by microglia, which release glutamate via the system xC- (SxC-) cystine-glutamate antiporter. With the aim of mitigating this source of neuronal stress and toxicity, we have developed a panel of inhibitors of the SxC- antiporter. The compounds were based on L-tyrosine, as elements of its structure align with those of glutamate, a primary physiological substrate of the SxC- antiporter. In addition to 3,5-dibromotyrosine, ten compounds were synthesized via amidation of that parent molecule with a selection of acyl halides. These agents were tested for the ability to inhibit release of glutamate from microglia activated with lipopolysaccharide (LPS), an activity exhibited by eight of the compounds. To confirm that the compounds were inhibitors of SxC-, two of them were further tested for the ability to inhibit cystine uptake. Finally, these agents were shown to protect primary cortical neurons from the toxicity exhibited by activated microglia. These agents may hold promise in reducing the neurodegenerative effects of neuroinflammation in conditions, such as encephalitis, traumatic brain injury, stroke, or neurodegenerative diseases.


Glutamic Acid , Microglia , Humans , Glutamic Acid/toxicity , Microglia/metabolism , Cystine/metabolism , Neuroinflammatory Diseases , Antiporters
3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Article En | MEDLINE | ID: mdl-37895969

Chronic, low-grade inflammation has been implicated in aging and age-dependent conditions, including Alzheimer's disease, cardiomyopathy, and cancer. One of the age-associated processes underlying chronic inflammation is protein aggregation, which is implicated in neuroinflammation and a broad spectrum of neurodegenerative diseases such as Alzheimer's, Huntington's, and Parkinson's diseases. We screened a panel of bioactive thiadiazolidinones (TDZDs) from our in-house library for rescue of protein aggregation in human-cell and C. elegans models of neurodegeneration. Among the tested TDZD analogs, PNR886 and PNR962 were most effective, significantly reducing both the number and intensity of Alzheimer-like tau and amyloid aggregates in human cell-culture models of pathogenic aggregation. A C. elegans strain expressing human Aß1-42 in muscle, leading to AD-like amyloidopathy, developed fewer and smaller aggregates after PNR886 or PNR962 treatment. Moreover, age-progressive paralysis was reduced 90% by PNR886 and 75% by PNR962, and "healthspan" (the median duration of spontaneous motility) was extended 29% and 62%, respectively. These TDZD analogs also extended wild-type C. elegans lifespan by 15-30% (p < 0.001), placing them among the most effective life-extension drugs. Because the lead drug in this family, TDZD-8, inhibits GSK3ß, we used molecular-dynamic tools to assess whether these analogs may also target GSK3ß. In silico modeling predicted that PNR886 or PNR962 would bind to the same allosteric pocket of inactive GSK3ß as TDZD-8, employing the same pharmacophore but attaching with greater avidity. PNR886 and PNR962 are thus compelling candidate drugs for treatment of tau- and amyloid-associated neurodegenerative diseases such as AD, potentially also reducing all-cause mortality.

4.
Cell Signal ; 109: 110763, 2023 09.
Article En | MEDLINE | ID: mdl-37315752

Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.


Extracellular Matrix Proteins , Serine Endopeptidases , Mice , Animals , Humans , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Extracellular Matrix Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , HEK293 Cells , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Disease Models, Animal , Luciferases/metabolism , Cognition , Receptors, LDL/metabolism
5.
eNeuro ; 10(4)2023 04.
Article En | MEDLINE | ID: mdl-37163733

The apolipoprotein E gene (APOE) confers the greatest genetic risk factor for Alzheimer's disease (AD), wherein the ε4 allele confers an elevated risk compared with the ε3 allele. Biological mechanisms that differ across these alleles have been explored in mouse models wherein the murine Apoe gene has undergone targeted replacement with sequences encoding human ApoE3 or ApoE4 (ApoE-TR mice). Such models have indicated that the two variants of ApoE produce differential effects on energy metabolism, including metabolic syndrome. However, glucose regulation has not been compared in ApoE-TR mice with and without amyloid ß-peptide (Aß) accumulation. We crossed ApoE3-TR and ApoE4-TR mice with a transgenic line that accumulates human Aß1-42 In male ApoE3-TR mice, introduction of Aß caused aberrations in glucose tolerance and in membrane translocation of astrocytic glucose transporter 1 (GLUT1). Phosphorylation of Tau at AD-relevant sites was correlated with glucose intolerance. These effects appeared independent of insulin dysregulation and were not observed in females. In ApoE4-TR mice, the addition of Aß had no significant effects because of a trend toward perturbation of the baseline values.


Alzheimer Disease , Amyloid beta-Peptides , Animals , Female , Humans , Male , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Genotype , Glucose , Mice, Transgenic
6.
Immunometabolism (Cobham) ; 4(3): e00003, 2022 Jul.
Article En | MEDLINE | ID: mdl-35966634

A shift in the energy-metabolism balance from oxidative phosphorylation to glycolysis is observed in several phenomena, from oncogenesis to differentiation. And this shift is not merely an indicator of the phenotypic change-an increase in glucose delivery often drives the adaption. At first blush, it seems that any route of entry should be equivalent, as long as sufficient quantities are supplied. However, an extensive study comparing the Th17 and Th1 subtypes of T cells now suggests that similar glucose transporters may not be interchangeable. Manipulation of individual transporters, or the downstream metabolites of their substrates, may afford dampening of autoimmunity potential with some degree of precision.

7.
Curr Alzheimer Res ; 19(7): 494-502, 2022.
Article En | MEDLINE | ID: mdl-35929621

Aging is an inevitable process characterized by progressive loss of physiological integrity and increased susceptibility to cancer, diabetes, cardiovascular, and neurodegenerative diseases; aging is the primary risk factor for Alzheimer's disease (AD), the most common cause of dementia. AD is characterized by brain pathology, including extracellular deposition of amyloid aggregation and intracellular accumulation of neurofibrillary tangles composed of hyperphosphorylated tau protein. In addition, losses of synapses and a wide range of neurons are pivotal pathologies in the AD brain. Accumulating evidence demonstrates hypoactivation of hippocampal neural networks in the aging brain, whereas AD-related mild cognitive impairment (AD-MCI) begins with hyperactivation, followed by a diminution of hippocampal activity as AD develops. The biphasic trends of the activity of the hippocampal neural network are consistent with the alteration of N-methyl-D-aspartate receptor (NMDA-R) activity from aging to prodromal (AD-MCI) to mid-/late stage AD. D-serine, a product of racemization catalyzed by serine racemase (SR), is an important co-agonist of the NMDA-R which is involved in synaptic events including neurotransmission, synaptogenesis, long-term potentiation (LTP), development, and excitotoxicity. SR and D-serine are decreased in the hippocampus of the aging brain, correlating with impairment of cognitive function. By contrast, SR is increased in AD brain, which is associated with a greater degree of cognitive dysfunction. Emerging studies suggest that D-serine levels in the brain or in cerebral spinal fluid from AD patients are higher than in age-matched controls, but the results are inconsistent. Very recently, serum D-serine levels in AD were reported to correlate with sex and clinical dementia rating (CDR) stage. This review will discuss alterations of NMDA-R and SR in aging and AD brain, and the mechanisms underlying the differential regulation of SR will be probed. Collectively, we propose that SR may be a molecular switch that distinguishes the effects of aging from those of AD on the brain.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , N-Methylaspartate , Aging/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Brain/pathology , Serine
8.
Int J Mol Sci ; 24(1)2022 Dec 30.
Article En | MEDLINE | ID: mdl-36614074

One feature of high-fat diet-induced neurodegeneration in the hypothalamus is an increased level of palmitate, which is associated with endoplasmic reticulum (ER) stress, loss of CoxIV, mitochondrial fragmentation, and decreased abundance of MC4R. To determine whether antidiabetic drugs protect against ER and/or mitochondrial dysfunction by lipid stress, hypothalamic neurons derived from pre-adult mice and neuronal Neuro2A cells were exposed to elevated palmitate. In the hypothalamic neurons, palmitate exposure increased expression of ER resident proteins, including that of SERCA2, indicating ER stress. Liraglutide reverted such altered ER proteostasis, while metformin only normalized SERCA2 expression. In Neuro2A cells liraglutide, but not metformin, also blunted dilation of the ER induced by palmitate treatment, and enhanced abundance and expression of MC4R at the cell surface. Thus, liraglutide counteracts, more effectively than metformin, altered ER proteostasis, morphology, and folding capacity in neurons exposed to fat. In palmitate-treated hypothalamic neurons, mitochondrial fragmentation took place together with loss of CoxIV and decreased mitochondrial membrane potential (MMP). Metformin, but not liraglutide, reverted mitochondrial fragmentation, and both liraglutide and metformin did not protect against either loss of CoxIV abundance or MMP. Thus, ER recovery from lipid stress can take place in hypothalamic neurons in the absence of recovered mitochondrial homeostasis.


Liraglutide , Metformin , Animals , Mice , Liraglutide/pharmacology , Palmitates/pharmacology , Palmitates/metabolism , Endoplasmic Reticulum Stress , Hypothalamus/metabolism , Neurons/metabolism , Metformin/pharmacology , Metformin/metabolism , Mitochondria/metabolism
9.
Neurobiol Aging ; 97: 73-88, 2021 01.
Article En | MEDLINE | ID: mdl-33161213

Alzheimer's disease (AD) is associated with disturbances in blood glucose regulation, and type-2 diabetes elevates the risk for dementia. A role for amyloid-ß peptide (Aß) in linking these age-related conditions has been proposed, tested primarily in transgenic mouse lines that overexpress mutated amyloid precursor protein (APP). Because APP has its own impacts on glucose regulation, we examined the BRI-Aß42 line ("Aß42-tg"), which produces extracellular Aß1-42 in the CNS without elevation of APP. We also looked for interactions with diet-induced obesity (DIO) resulting from a high-fat, high-sucrose ("western") diet. Aß42-tg mice were impaired in both spatial memory and glucose tolerance. Although DIO induced insulin resistance, Aß1-42 accumulation did not, and the impacts of DIO and Aß on glucose tolerance were merely additive. Aß42-tg mice exhibited no significant differences from wild-type in insulin production, body weight, lipidemia, appetite, physical activity, respiratory quotient, an-/orexigenic factors, or inflammatory factors. These negative findings suggested that the phenotype in these mice arose from perturbation of glucose excursion in an insulin-independent tissue. To wit, cerebral cortex of Aß42-tg mice had reduced glucose utilization, similar to human patients with AD. This was associated with insufficient trafficking of glucose transporter 1 to the plasma membrane in parenchymal brain cells, a finding also documented in human AD tissue. Together, the lower cerebral metabolic rate of glucose and diminished function of parenchymal glucose transporter 1 indicate that aberrant regulation of blood glucose in AD likely reflects a central phenomenon, resulting from the effects of Aß on cerebral parenchyma, rather than a generalized disruption of hypothalamic or peripheral endocrinology. The involvement of a specific glucose transporter in this deficit provides a new target for the design of AD therapies.


Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/physiology , Astrocytes/metabolism , Blood Glucose/metabolism , Brain/metabolism , Glucose Transporter Type 1/metabolism , Alzheimer Disease/etiology , Amyloid beta-Peptides/genetics , Animals , Diabetes Mellitus, Type 2/complications , Female , Gene Expression , Insulin/metabolism , Male , Mice, Transgenic , Obesity/complications , Peptide Fragments/metabolism , Risk
10.
J Neuroinflammation ; 16(1): 275, 2019 Dec 27.
Article En | MEDLINE | ID: mdl-31882005

BACKGROUND: Neuroinflammation, typified by elevated levels of interleukin-1 (IL-1) α and ß, and deficits in proteostasis, characterized by accumulation of polyubiquitinated proteins and other aggregates, are associated with neurodegenerative disease independently and through interactions of the two phenomena. We investigated the influence of IL-1ß on ubiquitination via its impact on activation of the E3 ligase parkin by either phosphorylated ubiquitin (P-Ub) or NEDD8. METHODS: Immunohistochemistry and Proximity Ligation Assay were used to assess colocalization of parkin with P-tau or NEDD8 in hippocampus from Alzheimer patients (AD) and controls. IL-1ß effects on PINK1, P-Ub, parkin, P-parkin, and GSK3ß-as well as phosphorylation of parkin by GSK3ß-were assessed in cell cultures by western immunoblot, using two inhibitors and siRNA knockdown to suppress GSK3ß. Computer modeling characterized the binding and the effects of P-Ub and NEDD8 on parkin. IL-1α, IL-1ß, and parkin gene expression was assessed by RT-PCR in brains of 2- and 17-month-old PD-APP mice and wild-type littermates. RESULTS: IL-1α, IL-1ß, and parkin mRNA levels were higher in PD-APP mice compared with wild-type littermates, and IL-1α-laden glia surrounded parkin- and P-tau-laden neurons in human AD. Such neurons showed a nuclear-to-cytoplasmic translocation of NEDD8 that was mimicked in IL-1ß-treated primary neuronal cultures. These cultures also showed higher parkin levels and GSK3ß-induced parkin phosphorylation; PINK1 levels were suppressed. In silico simulation predicted that binding of either P-Ub or NEDD8 at a singular position on parkin opens the UBL domain, exposing Ser65 for parkin activation. CONCLUSIONS: The promotion of parkin- and NEDD8-mediated ubiquitination by IL-1ß is consistent with an acute neuroprotective role. However, accumulations of P-tau and P-Ub and other elements of proteostasis, such as translocated NEDD8, in AD and in response to IL-1ß suggest either over-stimulation or a proteostatic failure that may result from chronic IL-1ß elevation, easily envisioned considering its early induction in Down's syndrome and mild cognitive impairment. The findings further link autophagy and neuroinflammation, two important aspects of AD pathogenesis, which have previously been only loosely related.


Alzheimer Disease/metabolism , Interleukin-1beta/metabolism , NEDD8 Protein/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology , Aged , Animals , Enzyme Activation/physiology , Female , Humans , Male , Mice , Models, Molecular , Protein Transport/physiology , Rats, Sprague-Dawley , Ubiquitin/metabolism
11.
J Neurosci Methods ; 319: 40-46, 2019 05 01.
Article En | MEDLINE | ID: mdl-30412730

BACKGROUND: Events that instigate disease may involve biochemical events distinct from changes in the steady-state levels of proteins. Even chronic degenerative disorders appear to involve changes such as post-translational modifications. NEW METHOD: We have begun a series of proteomics analyses on proteins that have been fractionated by functional status. Because Alzheimer's disease (AD) is associated with metabolic perturbations such as Type-2 diabetes, fractionation hinged on binding to phosphatidylinositol trisphosphate (PIP3), key to insulin/insulin-like growth factor signaling. We compared mice on normal chow to counterparts subjected to diet-induced obesity (DIO) or to mice expressing human Aß1-42 from a transgene. RESULTS: The prevailing phenotypic finding in either experimental group was loss of PIP3 binding. Of the 1228 proteins that showed valid PIP3 binding in any group of mice, 55% exhibited a significant quantitative difference in the number of spectral counts as a function of DIO, 63% as function of the Aß transgene, and 79% as a function of either variable. There was remarkable overlap among the proteins altered in the two experimental groups, and pathway analysis indicated effects on proteostasis, apoptosis, and synaptic vesicles. COMPARISON WITH EXISTING METHODS: Most proteomics approaches only identify differences in the steady-state levels of proteins. Our overlay of a functional distinction permits new levels of discovery that may achieve novel insights into physiology in an unbiased and inclusive manner. CONCLUSIONS: Proteomics analyses have revolutionized the discovery phase of biomedical research but are conventionally limited in scope. The creative use of fractionation prior to proteomic discovery is likely to provide important insights into AD and related disorders.


Alzheimer Disease/metabolism , Brain/metabolism , Insulin/metabolism , Obesity/metabolism , Phosphatidylinositol Phosphates/metabolism , Somatomedins/metabolism , Amyloid beta-Peptides , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Carrier Proteins/metabolism , Diet, Western , Humans , Male , Membrane Proteins/metabolism , Mice, Transgenic , Peptide Fragments , Proteomics , Signal Transduction
12.
Am J Physiol Endocrinol Metab ; 316(1): E106-E120, 2019 01 01.
Article En | MEDLINE | ID: mdl-30422705

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein widely studied for its role as the source of ß-amyloid peptide, accumulation of which is causal in at least some cases of Alzheimer's disease (AD). APP is expressed ubiquitously and is involved in diverse biological processes. Growing bodies of evidence indicate connections between AD and somatic metabolic disorders related to type 2 diabetes, and App-/- mice show alterations in glycemic regulation. We find that App-/- mice have higher levels of insulin-degrading enzyme (IDE) mRNA, protein, and activity compared with wild-type controls. This regulation of IDE by APP was widespread across numerous tissues, including liver, skeletal muscle, and brain as well as cell types within neural tissue, including neurons, astrocytes, and microglia. RNA interference-mediated knockdown of APP in the SIM-A9 microglia cell line elevated IDE levels. Fasting levels of blood insulin were lower in App-/- than App+/+ mice, but the former showed a larger increase in response to glucose. These low basal levels may enhance peripheral insulin sensitivity, as App-/- mice failed to develop impairment of glucose tolerance on a high-fat, high-sucrose ("Western") diet. Insulin levels and insulin signaling were also lower in the App-/- brain; synaptosomes prepared from App-/- hippocampus showed diminished insulin receptor phosphorylation compared with App+/+ mice when stimulated ex vivo. These findings represent a new molecular link connecting APP to metabolic homeostasis and demonstrate a novel role for APP as an upstream regulator of IDE in vivo.


Amyloid beta-Protein Precursor/genetics , Brain/metabolism , Insulin Resistance/genetics , Insulin/metabolism , Insulysin/genetics , Liver/metabolism , Muscle, Skeletal/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Astrocytes/metabolism , Cell Line , Diet, High-Fat , Diet, Western , Glucose Intolerance/genetics , Hippocampus/metabolism , Insulysin/metabolism , Mice , Mice, Knockout , Microglia/metabolism , Neurons/metabolism , Phosphorylation , RNA, Messenger/metabolism , Receptor, Insulin/metabolism , Synaptosomes/metabolism
13.
Front Mol Neurosci ; 12: 310, 2019.
Article En | MEDLINE | ID: mdl-31920540

Age-progressive neurodegenerative pathologies, including Alzheimer's disease (AD), are distinguished and diagnosed by disease-specific components of intra- or extra-cellular aggregates. Increasing evidence suggests that neuroinflammation promotes protein aggregation, and is involved in the etiology of neurological diseases. We synthesized and tested analogs of the naturally occurring tubulin-binding compound, combretastatin A-4. One such analog, PNR502, markedly reduced the quantity of Alzheimer-associated amyloid aggregates in the BRI-Aß1-42 mouse model of AD, while blunting the ability of the pro-inflammatory cytokine IL-1ß to raise levels of amyloid plaque and its protein precursors in a neuronal cell-culture model. In transgenic Caenorhabditis elegans (C. elegans) strains that express human Aß1-42 in muscle or neurons, PNR502 rescued Aß-induced disruption of motility (3.8-fold, P < 0.0001) or chemotaxis (1.8-fold, P < 0.05), respectively. Moreover, in C. elegans with neuronal expression of Aß1-42, a single day of PNR502 exposure reverses the chemotaxis deficit by 54% (P < 0.01), actually exceeding the protection from longer exposure. Moreover, continuous PNR502 treatment extends nematode lifespan 23% (P ≤ 0.001). Given that PNR502 can slow, prevent, or reverse Alzheimer-like protein aggregation in human-cell-culture and animal models, and that its principal predicted and observed binding targets are proteins previously implicated in Alzheimer's, we propose that PNR502 has therapeutic potential to inhibit cerebral Aß1-42 aggregation and prevent or reverse neurodegeneration.

14.
J Neurochem ; 145(5): 358-361, 2018 06.
Article En | MEDLINE | ID: mdl-29663393

This editorial highlights an article by McKee and colleagues in the current issue of Journal of Neurochemistry, in which the authors report epigenetic changes linked to one-carbon metabolism in prefrontal cortex (PFC) of murine offspring from dams fed high-fat diet to mimic maternal obesity. The group found that high-fat diet feeding in utero increases weight gain in offspring and dynamically alters DNA methylation in the PFC of male but not female brains. These epigenetic marks were associated with a shift in brain one-carbon metabolism (folate and methionine) intermediates and were normalized by early-life methyl-donor supplementation in a sex-specific manner.


DNA Methylation , Diet, High-Fat , Animals , Brain , Carbon , Female , Humans , Male , Mice , Obesity , Pregnancy
15.
Alzheimers Dement ; 14(2): 230-242, 2018 02.
Article En | MEDLINE | ID: mdl-28945989

INTRODUCTION: Alzheimer apolipoprotein E (APOE) ɛ4/ɛ4 carriers have earlier disease onset and more protein aggregates than patients with other APOE genotypes. Autophagy opposes aggregation, and important autophagy genes are coordinately regulated by transcription factor EB (TFEB) binding to "coordinated lysosomal expression and regulation" (CLEAR) DNA motifs. METHODS: Autophagic gene expression was assessed in brains of controls and Alzheimer's disease (AD) patients parsed by APOE genotype and in a glioblastoma cell line expressing either apoE3 or apoE4. Computational modeling assessed interactions between apoE and mutated apoE with CLEAR or modified DNA. RESULTS: Three TFEB-regulated mRNA transcripts-SQSTM, MAP1LC3B, and LAMP2-were lower in AD ɛ4/ɛ4 than in AD ɛ3/ɛ3 brains. Computational modeling predicted avid specific binding of apoE4 to CLEAR motifs. ApoE was found in cellular nuclei, and in vitro binding assays suggest competition between apoE4 and TFEB at CLEAR sites. CONCLUSION: ApoE4-CLEAR interactions may account for suppressed autophagy in APOE ɛ4/ɛ4 carriers and, in this way, contribute to earlier AD onset.


Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Autophagy/genetics , Brain/metabolism , Lysosomes/metabolism , Nucleotide Motifs/genetics , Alzheimer Disease/genetics , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line, Transformed , Computer Simulation , Cytokines/metabolism , Disease Progression , Electrophoretic Mobility Shift Assay , Epistasis, Genetic/genetics , Female , Genotype , Humans , Lysosomes/pathology , Male , Models, Molecular , Molecular Docking Simulation , Protein Binding/genetics , RNA, Messenger/metabolism
16.
Neurobiol Aging ; 49: 145-153, 2017 01.
Article En | MEDLINE | ID: mdl-27810638

Presenilin (PS)-1 is an intramembrane protease serving as the catalytic component of γ-secretase. Mutations in the PS1 gene are the most common cause of familial Alzheimer's disease (FAD). The low-density lipoprotein (LDL)-receptor family member apoER2 is a γ-secretase substrate that has been associated with AD in several ways, including acting as a receptor for apolipoprotein E (ApoE). ApoER2 is processed by γ-secretase into a C-terminal fragment (γ-CTF) that appears to regulate gene expression. FAD PS1 mutations were tested for effects on apoER2. PS1 mutation R278I showed impaired γ-secretase activity for apoER2 in the basal state or after exposure to Reelin. PS1 M146V mutation permitted accumulation of apoER2 CTFs after Reelin treatment, whereas no difference was seen between wild-type (WT) and M146V in the basal state. PS1 L282V mutation, combined with the γ-secretase inhibitor N-(N-[3,5-Difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butyl ester, greatly reduced the cell-surface levels of apoER2 without affecting total apoER2 levels, suggesting a defect in receptor trafficking. These findings indicate that impaired processing or localization of apoER2 may contribute to the pathogenic effects of FAD mutations in PS1.


LDL-Receptor Related Proteins/metabolism , Mutation , Presenilin-1/genetics , Presenilin-1/physiology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/physiology , Animals , Cell Adhesion Molecules, Neuronal , Cells, Cultured , Extracellular Matrix Proteins , Gene Expression , LDL-Receptor Related Proteins/genetics , Mice, Transgenic , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases
17.
J Neurochem ; 139 Suppl 2: 24-57, 2016 10.
Article En | MEDLINE | ID: mdl-27747882

Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how gene regulatory events impact neurochemistry in a much broader sense, extending beyond the neurochemicals that translate electrical signals into chemical ones in the synapse, to also include every aspect of neural development, structure, function, and pathology. From the beginning, the mutability - yet relative stability - of genes and their expression patterns were recognized as potential substrates for some of the most intriguing phenomena in neurobiology - those instances of plasticity required for learning and memory. Near-heretical speculation was offered in the idea that perhaps the very sequence of the genome was altered to encode memories. A fascinating component of the intervening progress includes evidence that the central dogma is not nearly as rigid and consistent as we once thought. And this mutability extends to the potential to manipulate that code for both experimental and clinical purposes. Astonishing progress has been made in the molecular biology of neurochemistry during the 60 years since this journal debuted. Many of the gains in conceptual understanding have been driven by methodological progress, from automated high-throughput sequencing instruments to recombinant-DNA vectors that can convey color-coded genetic modifications in the chromosomes of live adult animals. This review covers the highlights of these advances, both theoretical and technological, along with a brief window into the promising science ahead. This article is part of the 60th Anniversary special issue.


Epigenesis, Genetic/physiology , Gene Expression Regulation/physiology , Genetic Therapy/trends , Neurochemistry/trends , Animals , Forecasting , Genetic Therapy/methods , Humans , Neurochemistry/methods , Neuronal Plasticity/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Int J Mol Sci ; 17(9)2016 Sep 20.
Article En | MEDLINE | ID: mdl-27657053

Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson's disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson's disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson's disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules.

19.
J Neurochem ; 138(4): 503-5, 2016 Aug.
Article En | MEDLINE | ID: mdl-27501180

This Editorial highlights a study by Xia and coworkers in the current issue of the Journal of Neurochemistry, in which the authors reveal a possible mechanistic link between DISC1 (disrupted-in-schizophrenia-1), a genetic risk factor for schizophrenia, and N-methyl-d-aspartate receptor (NMDAR) that is also linked with schizophrenia. The authors show that perturbed communication between DISC1 and NMDARs represents a hidden perpetrator for abnormal dendritic and synaptic maturation. Read the highlighted article 'DISC1, astrocytes and neuronal maturation: a possible mechanistic link with implications for mental disorders' on page 518.

20.
Aging Cell ; 15(5): 924-39, 2016 10.
Article En | MEDLINE | ID: mdl-27448508

Neurodegenerative diseases are distinguished by characteristic protein aggregates initiated by disease-specific 'seed' proteins; however, roles of other co-aggregated proteins remain largely unexplored. Compact hippocampal aggregates were purified from Alzheimer's and control-subject pools using magnetic-bead immunoaffinity pulldowns. Their components were fractionated by electrophoretic mobility and analyzed by high-resolution proteomics. Although total detergent-insoluble aggregates from Alzheimer's and controls had similar protein content, within the fractions isolated by tau or Aß1-42 pulldown, the protein constituents of Alzheimer-derived aggregates were more abundant, diverse, and post-translationally modified than those from controls. Tau- and Aß-containing aggregates were distinguished by multiple components, and yet shared >90% of their protein constituents, implying similar accretion mechanisms. Alzheimer-specific protein enrichment in tau-containing aggregates was corroborated for individuals by three analyses. Five proteins inferred to co-aggregate with tau were confirmed by precise in situ methods, including proximity ligation amplification that requires co-localization within 40 nm. Nematode orthologs of 21 proteins, which showed Alzheimer-specific enrichment in tau-containing aggregates, were assessed for aggregation-promoting roles in C. elegans by RNA-interference 'knockdown'. Fifteen knockdowns (71%) rescued paralysis of worms expressing muscle Aß, and 12 (57%) rescued chemotaxis disrupted by neuronal Aß expression. Proteins identified in compact human aggregates, bound by antibody to total tau, were thus shown to play causal roles in aggregation based on nematode models triggered by Aß1-42 . These observations imply shared mechanisms driving both types of aggregation, and/or aggregate-mediated cross-talk between tau and Aß. Knowledge of protein components that promote protein accrual in diverse aggregate types implicates common mechanisms and identifies novel targets for drug intervention.


Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Hippocampus/metabolism , Hippocampus/pathology , Protein Aggregation, Pathological/metabolism , 14-3-3 Proteins/metabolism , Case-Control Studies , Cell Death/drug effects , Detergents/pharmacology , Gene Knockdown Techniques , Humans , Intermediate Filament Proteins/metabolism , Phosphorylation/drug effects , Protein Binding/drug effects , Proteomics , Solubility , tau Proteins/metabolism
...