Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885696

RESUMEN

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.

2.
Plants (Basel) ; 13(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38202436

RESUMEN

A seedling susceptible Australian common wheat cultivar Sentinel showed resistance to stripe rust under field conditions. A Sentinel/Nyabing3 (Nyb3)-derived recombinant inbred line (RIL) population was phenotyped. A DArTseq marker-based linkage map of the Sentinel/Nyb3 RIL population was used to determine the chromosomal location of the adult plant stripe rust resistance possessed by Sentinel. Three consistent quantitative trait loci (QTL); QYr.sun-1BL, QYr.sun-2AS and QYr.sun-3BS were detected, and they on an average explained 18%, 15.6% and 10.6% of the variation in stripe rust response, respectively. All three QTL were contributed by Sentinel. QYr.sun-1B corresponded to the previously characterized gene Yr29. Sentinel expressed resistance at the four-leaf stage at 21 ± 2 °C in the greenhouse. Monogenic segregation among the RIL population was observed when screened at the four-leaf stage at 21 ± 2 °C in the greenhouse, and the underlying resistance locus was temporarily named YrSen. QYr.sun-3BS peaked on YrSen. QYr.sun-2AS was mendelized by generating and phenotyping a mongenically sgregating F6 RIL population, and it was temporarily designated YrSen2. RILs carrying Yr29, YrSen and YrSen2 in combination exhibited responses like the parent Sentinel. Based on a comparison of the genomic locations and resistance expression with stripe rust resistance genes previously located in their respective chromosomes, QYr.sun-2AS (YrSen2) and QYr.sun-3BS (YrSen) were concluded to represent new loci.

3.
Theor Appl Genet ; 137(1): 1, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071267

RESUMEN

KEY MESSAGE: Sr65 in chromosome 1A of Indian wheat landrace Hango-2 is a potentially useful all-stage resistance gene that currently protects wheat from stem rust in Australia, India, Africa and Europe. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), threatened global wheat production with the appearance of widely virulent races that included TTKSK and TTRTF. Indian landrace Hango-2 showed resistance to Pgt races in India and Australia. Screening of a Hango-2/Avocet 'S' (AvS) recombinant inbred line population identified two stem rust resistance genes, a novel gene (temporarily named as SrH2) from Hango-2 and Sr26 from AvS. A mapping population segregating for SrH2 alone was developed from two recombinant lines. SrH2 was mapped on the short arm of chromosome 1A, where it was flanked by KASP markers KASP_7944 (proximal) and KASP_12147 (distal). SrH2 was delimited to an interval of 1.8-2.3 Mb on chromosome arm 1AS. The failure to detect candidate genes through MutRenSeq and comparative genomic analysis with the pan-genome dataset indicated the necessity to generate a Hango-2 specific assembly for detecting the gene sequence linked with SrH2 resistance. MutRenSeq however enabled identification of SrH2-linked KASP marker sunCS_265. Markers KASP_12147 and sunCS_265 showed 92% and 85% polymorphism among an Australian cereal cultivar diversity panel and can be used for marker-assisted selection of SrH2 in breeding programs. The effectiveness of SrH2 against Pgt races from Europe, Africa, India, and Australia makes it a valuable resource for breeding stem rust-resistant wheat cultivars. Since no wheat-derived gene was previously located in chromosome arm 1AS, SrH2 represents a new locus and named as SR65.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Australia , Fitomejoramiento , Enfermedades de las Plantas/genética
4.
Genes (Basel) ; 14(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38002936

RESUMEN

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the major threats to global wheat production. The common wheat landraces AUS27506 and AUS27894 displayed stripe rust resistance against several commercially prevailing Pst pathotypes. These genotypes were crossed with a stripe-rust-susceptible landrace AUS27229 to understand the inheritance of resistance and to determine the genomic location(s) of underlying gene(s). F3 generations of crosses AUS27506/AUS27229 and AUS27894/AUS27229 showed monogenic segregation for stripe rust resistance under greenhouse conditions. The absence of segregation for stripe rust response among the AUS27506/AUS27894-derived F3 population suggested that both genotypes carry the same gene. The stripe rust resistance gene carried by AUS27506 and AUS27894 was tentatively named YrAW4. A bulked segregant analysis placed YrAW4 in the long arm of chromosome 2B. The AUS27506/AUS27229 F3 population was enhanced to develop an F6 recombinant inbred line (RIL) population for detailed mapping of chromosome 2BL. DArT-based SSR, STS and SNP markers were employed to enrich the 2BL map. DArT-based STS markers sun481 and SNP marker IWB12294 flanked YrAW4 proximally (1.8 cM) and distally (1.2 cM), respectively. Deletion mapping placed sun481 in the deletion bin 2BL-5. All stripe rust resistance genes, previously located on chromosome 2BL, neither express an infection type like YrAW4, nor are they mapped in the deletion bin 2BL-5. Hence, YrAW4 represented a new locus and was formally named Yr72. The usefulness of the markers IWB12294 and sun481 in marker-assisted selection was demonstrated by the amplification of alleles that are different to that linked with Yr72 in 19 common wheat and two durum wheat cultivars.


Asunto(s)
Basidiomycota , Triticum , Mapeo Cromosómico , Marcadores Genéticos , Triticum/genética , Genotipo , Alelos , Basidiomycota/genética
5.
BMC Plant Biol ; 23(1): 590, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008766

RESUMEN

BACKGROUND: Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a threat to global wheat production. Deployment of widely effective resistance genes underpins management of this ongoing threat. This study focused on the mapping of stripe rust resistance gene YR63 from a Portuguese hexaploid wheat landrace AUS27955 of the Watkins Collection. RESULTS: YR63 exhibits resistance to a broad spectrum of Pst races from Australia, Africa, Asia, Europe, Middle East and South America. It was mapped to the short arm of chromosome 7B, between two single nucleotide polymorphic (SNP) markers sunCS_YR63 and sunCS_67, positioned at 0.8 and 3.7 Mb, respectively, in the Chinese Spring genome assembly v2.1. We characterised YR63 locus using an integrated approach engaging targeted genotyping-by-sequencing (tGBS), mutagenesis, resistance gene enrichment and sequencing (MutRenSeq), RNA sequencing (RNASeq) and comparative genomic analysis with tetraploid (Zavitan and Svevo) and hexaploid (Chinese Spring) wheat genome references and 10+ hexaploid wheat genomes. YR63 is positioned at a hot spot enriched with multiple nucleotide-binding and leucine rich repeat (NLR) and kinase domain encoding genes, known widely for defence against pests and diseases in plants and animals. Detection of YR63 within these gene clusters is not possible through short-read sequencing due to high homology between members. However, using the sequence of a NLR member we were successful in detecting a closely linked SNP marker for YR63 and validated on a panel of Australian bread wheat, durum and triticale cultivars. CONCLUSIONS: This study highlights YR63 as a valuable source for resistance against Pst in Australia and elsewhere. The closely linked SNP marker will facilitate rapid introgression of YR63 into elite cultivars through marker-assisted selection. The bottleneck of this study reinforces the necessity for a long-read sequencing such as PacBio or Oxford Nanopore based techniques for accurate detection of the underlying resistance gene when it is part of a large gene cluster.


Asunto(s)
Basidiomycota , Triticum , Mapeo Cromosómico , Triticum/genética , Resistencia a la Enfermedad/genética , Australia , Nucleótidos , Enfermedades de las Plantas/genética , Basidiomycota/genética
6.
Plant Direct ; 7(8): e520, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600239

RESUMEN

Targeted exome-based genotype by sequencing (t-GBS), a sequencing technology that tags SNPs and haplotypes in gene-rich regions was used in previous genome-wide association studies (GWAS) for sodicity tolerance in bread wheat. Thirty-nine novel SNPs including 18 haplotypes for yield and yield-components were identified. The present study aimed at developing SNP-derived markers by precisely locating new SNPs on ~180 bp allelic sequence of t-GBS, marker validation, and SNP functional characterization based on its exonic location. We identified unknown locations of significant SNPs/haplotypes by aligning allelic sequences on to IWGSC RefSeqv1.0 on respective chromosomes. Eighteen out of the target 39 SNP locations fulfilled the criteria for producing PCR markers, among which only eight produced polymorphic signals. These eight markers associated with yield, plants m-2, heads m-2, and harvest index, including a pleiotropic marker for yield, harvest index, and grains/head were validated for its amplification efficiency and phenotypic effects in focused identification germplasm strategy (FIGS) wheat set and a doubled haploid (DH) population (Scepter/IG107116). The phenotypic variation explained by these markers are in the range of 4.1-37.6 in the FIGS population. High throughput PCR-based genotyping using new markers and association with phenotypes in FIGS wheat set and DH population validated the effect of functional SNP on closely associated genes-calcineurin B-like- and dirigent protein, basic helix-loop-helix (BHLH-), plant homeodomain (PHD-) and helix-turn-helix myeloblastosis (HTH myb) type -transcription factor. Further, genome-wide SNP annotation using SnpEff tool confirmed that these SNPs are in gene regulatory regions (upstream, 3'-UTR, and intron) modifying gene expression and protein-coding. This integrated approach of marker design for t-GBS alleles, SNP functional annotation, and high-throughput genotyping of functional SNP offers translation solutions across crops and complex traits in crop improvement programs.

7.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111824

RESUMEN

The Ug99-effective stem rust resistance gene Sr48 was mapped to chromosome 2A based on its repulsion linkage with Yr1 in an Arina/Forno recombinant inbred line (RIL) population. Attempts to identify markers closely linked to Sr48 using available genomic resources were futile. This study used an Arina/Cezanne F5:7 RIL population to identify markers closely linked with Sr48. Using the Arina/Cezanne DArTseq map, Sr48 was mapped on the short arm of chromosome 2D and it co-segregated with 12 markers. These DArTseq marker sequences were used for BlastN search to identify corresponding wheat chromosome survey sequence (CSS) contigs, and PCR-based markers were developed. Two simple sequence repeat (SSR) markers, sun590 and sun592, and two Kompetitive Allele-Specific PCR (KASP) markers were derived from the contig 2DS_5324961 that mapped distal to Sr48. Molecular cytogenetic analysis using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) identified a terminal translocation of chromosome 2A in chromosome 2DL of Forno. This translocation would have led to the formation of a quadrivalent involving chromosomes 2A and 2D in the Arina/Forno population, which would have exhibited pseudo-linkage between Sr48 and Yr1 in chromosome 2AL. Polymorphism of the closet marker sunKASP_239 among a set of 178 wheat genotypes suggested that this marker can be used for marker-assisted selection of Sr48.

8.
Phytopathology ; 113(4): 667-677, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36897760

RESUMEN

Rust diseases are among the major constraints for wheat production worldwide due to the emergence and spread of highly destructive races of Puccinia. The most common approach to minimize yield losses due to rust is to use cultivars that are genetically resistant. Modern wheat cultivars, landraces, and wild relatives can contain undiscovered resistance genes, which typically encode kinase or nucleotide-binding site leucine rich repeat (NLR) domain containing receptor proteins. Recent research has shown that these genes can provide either resistance in all growth stages (all-stage resistance; ASR) or specially in later growth stages (adult-plant resistance; APR). ASR genes are pathogen and race-specific, meaning can function against selected races of the Puccinia fungus due to the necessity to recognize specific avirulence molecules in the pathogen. APR genes are either pathogen-specific or multipathogen resistant but often race-nonspecific. Prediction of resistance genes through rust infection screening alone remains complex when more than one resistance gene is present. However, breakthroughs during the past half century such as the single-nucleotide polymorphism-based genotyping techniques and resistance gene isolation strategies like mutagenesis, resistance gene enrichment, and sequencing (MutRenSeq), mutagenesis and chromosome sequencing (MutChromSeq), and association genetics combined with RenSeq (AgRenSeq) enables rapid transfer of resistance from source to modern cultivars. There is a strong need for combining multiple genes for better efficacy and longer-lasting resistance. Hence, techniques like gene cassette creation speeds up the gene combination process, but their widespread adoption and commercial use is limited due to their transgenic nature.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Basidiomycota/fisiología , Hongos
10.
Genes (Basel) ; 13(6)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35741726

RESUMEN

Breeding for leaf rust resistance has been successful worldwide and is underpinned by the discovery and characterisation of genetically diverse sources of resistance. An English scientist, Arthur Watkins, collected pre-Green Revolution wheat genotypes from 33 locations worldwide in the early part of the 20th Century and this collection is now referred to as the 'Watkins Collection'. A common wheat genotype, Aus27352 from Yugoslavia, showed resistance to currently predominating Australian pathotypes of the wheat leaf rust pathogen. We crossed Aus27352 with a leaf rust susceptible wheat selection Avocet S and a recombinant inbred line (RIL) F6 population of 200 lines was generated. Initial screening at F3 generation showed monogenic segregation for seedling response to leaf rust in Aus27352. These results were confirmed by screening the Aus27352/Avocet S RIL population. The underlying locus was temporarily named LrAW2. Bulked segregant analysis using the 90K Infinium SNP array located LrAW2 in the long arm of chromosome 2B. Tests with molecular markers linked to two leaf rust resistance genes, Lr50 and Lr58, previously located in chromosome 2B, indicated the uniqueness of LrAW2 and it was formally designated Lr82. Kompetitive allele-specific polymerase chain reaction assays were developed for Lr82-linked SNPs. KASP_22131 mapped 0.8 cM proximal to Lr82 and KASP_11333 was placed 1.2 cM distal to this locus. KASP_22131 showed 91% polymorphism among a set of 89 Australian wheat cultivars. We recommend the use of KASP_22131 for marker assisted pyramiding of Lr82 in breeding programs following polymorphism check on parents.


Asunto(s)
Basidiomycota , Triticum , Australia , Basidiomycota/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas , Marcadores Genéticos , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
11.
Theor Appl Genet ; 135(5): 1541-1550, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35199199

RESUMEN

KEY MESSAGE: Adult plant stem rust resistance locus, QSrGH.cs-2AL, was identified in durum wheat Glossy Huguenot and mendelised as Sr63. Markers closely linked with Sr63 were developed. An F3 population from a Glossy Huguenot (GH)/Bansi cross used in a previous Australian study was advanced to F6 for molecular mapping of adult plant stem rust resistance. Maturity differences among F6 lines confounded assessments of stem rust response. GH was crossed with a stem rust susceptible F6 recombinant inbred line (RIL), GHB14 (M14), with similar maturity and an F6:7 population was developed through single seed descent method. F7 and F8 RILs were tested along with the parents at different locations. The F6 individual plants and both parents were genotyped using the 90 K single nucleotide polymorphism (SNP) wheat array. Stem rust resistance QTL on the long arms of chromosomes 1B (QSrGH.cs-1BL) and 2A (QSrGH.cs-2AL) were detected. QSrGH.cs-1BL and QSrGH.cs-2AL were both contributed by GH and explained 22% and 18% adult plant stem rust response variation, respectively, among GH/M14 RIL population. RILs carrying combinations of these QTL reduced more than 14% stem rust severity compared to those that possessed QSrGH.cs-1BL and QSrGH.cs-2AL individually. QSrGH.cs1BL was demonstrated to be the same as Sr58/Lr46/Yr29/Pm39 through marker genotyping. Lines lacking QSrGH.cs-1BL were used to Mendelise QSrGH.cs-2AL. Based on genomic locations of previously catalogued stem rust resistance genes and the QSrGH.cs-2AL map, it appeared to represent a new APR locus and was permanently named Sr63. SNP markers associated with Sr63 were converted to kompetetive allele-specific PCR (KASP) assays and were validated on a set of durum cultivars.


Asunto(s)
Basidiomycota , Triticum , Australia , Basidiomycota/fisiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Tallos de la Planta/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/genética
12.
Theor Appl Genet ; 135(3): 865-882, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34993553

RESUMEN

KEY MESSAGE: New genomic regions for high accumulation of 10 minerals were identified. The 1B:1R and 2NS translocations enhanced concentrations of four and two minerals, respectively, in addition to disease resistance. Puccinia species, the causal agents of rust diseases of wheat, have the potential to cause total crop failures due their high evolutionary ability to acquire virulence for resistance genes deployed in commercial cultivars. Hence, the discovery of genetically diverse sources of rust resistance is essential. On the other hand, biofortification of wheat for essential nutrients, such as zinc (Zn) and iron (Fe), is also an objective in wheat improvement programs to tackle micronutrient deficiency. The development of rust-resistant and nutrient-concentrated wheat cultivars would be important for sustainable production and the fight against malnutrition. The HarvestPlus association mapping panel (HPAMP) that included nutrient-dense sources from diverse genetic backgrounds was genotyped using a 90 K Infinium SNP array and 13 markers linked with rust resistance genes. The HPAMP was used for genome-wide association mapping to identify genomic regions underpinning rust resistance and mineral accumulation. Twelve QTL for rust resistance and 53 for concentrations of 10 minerals were identified. Comparison of results from this study with the published QTL information revealed the detection of already known and some putatively new genes/QTL underpinning stripe rust and leaf rust resistance in this panel. Thirty-six new QTL for mineral concentration were identified on 17 chromosomes. Accessions carrying the 1B:1R translocation accumulated higher concentrations of Zn, Fe, Copper (Cu) and sulphur (S). The 2NS segment showed enhanced accumulation of grain Fe and Cu. Fifteen rust-resistant and biofortified accessions were identified for use as donor sources in breeding programs.


Asunto(s)
Basidiomycota , Triticum , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genómica , Minerales , Fitomejoramiento , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Triticum/genética
13.
Theor Appl Genet ; 134(7): 2213-2220, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33839800

RESUMEN

KEY MESSAGE: An adult plant stripe rust resistance gene Yr75 was located on the long arm of chromosome 7A. Fine mapping of the region identified markers closely linked with Yr75. Australian wheat cultivar Axe produced resistant to moderately resistant stripe rust responses under field conditions and was exhibiting seedling responses varying from 33C to 3+ under greenhouse conditions. Experiments covering tests at different growth stages (2nd, 3rd and 4th leaf stages) demonstrated the clear expression of resistance at the 4th leaf stage under controlled-environment greenhouse conditions. A recombinant inbred line (RIL) population was developed from the Axe/Nyabing-3 (Nyb) cross. Genetic analysis of Axe/Nyb RIL population in the greenhouse at the 4th leaf stage showed monogenic inheritance of stripe rust resistance. Selective genotyping using the iSelect 90 K Infinium SNP genotyping array was performed, and the resistance locus was mapped to the long arm of chromosome 7A and named Yr75. The Axe/Nyb RIL population was genotyped using a targeted genotype-by-sequencing assay, and the resistance-linked SNPs were converted into kompetitive allele-specific PCR (KASP) markers. These markers were tested on the entire Axe/Nyb RIL population, and markers sunKASP_430 and sunKASP_427 showed close association with Yr75 in the Axe/Nyb RIL population. A high-resolution mapping family of 1032 F2 plants from the Axe/Nyb cross was developed and genotyped with sunKASP_430 and sunKASP_427, and these markers flanked Yr75 at 0.3 cM and 0.4 cM, respectively. These markers cover 1.24 Mb of the physical map of Chinese Spring, and this information will be useful for map-based cloning of Yr75.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Australia , Mapeo Cromosómico , Genes de Plantas , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Triticum/microbiología
14.
Theor Appl Genet ; 134(3): 849-858, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33388887

RESUMEN

KEY MESSAGE: A new leaf rust resistance gene Lr80 was identified and closely linked markers were developed for its successful pyramiding with other marker-tagged genes to achieve durable control of leaf rust. Common wheat landrace Hango-2, collected in 2006 from the Himalayan area of Hango, District Kinnaur, in Himachal Pradesh, exhibited a very low infection type (IT;) at the seedling stage to all Indian Puccinia triticina (Pt) pathotypes, except the pathotype 5R9-7 which produced IT 3+. Genetic analysis based on Agra Local/Hango-2-derived F3 families indicated monogenic control of leaf rust resistance, and the underlying locus was temporarily named LrH2. Bulked segregant analysis using 303 simple sequence repeat (SSR) markers located LrH2 in the short arm of chromosome 2D. An additional set of 10 chromosome 2DS-specific markers showed polymorphism between the parents and these were mapped on the entire Agra Local/Hango-2 F3 population. LrH2 was flanked by markers cau96 (distally) and barc124 (proximally). The 90 K Infinium SNP array was used to identify SNP markers linked with LrH2. Markers KASP_17425 and KASP_17148 showed association with LrH2. Comparison of seedling leaf rust response data and marker locations across different maps demonstrated the uniqueness of LrH2 and it was formally named Lr80. The Lr80-linked markers KASP_17425, KASP_17148 and barc124 amplified alleles/products different to Hango-2 in 82 Australian cultivars indicating their robustness for marker-assisted selection of this gene in wheat breeding programs.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Ligamiento Genético , Marcadores Genéticos , Enfermedades de las Plantas/microbiología , Triticum/inmunología , Triticum/microbiología
15.
Plant Dis ; 105(3): 636-642, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32852254

RESUMEN

The pathogen Uromyces viciae-fabae causes rust (a fungal disease) on faba bean (Vicia faba). This disease limits faba bean production in Africa, Asia, Europe, and Australia. The development of resistant cultivars to U. viciae-fabae is the optimal solution for sustainable disease management. However, unknown virulence in Australian U. viciae-fabae populations has confounded resistance breeding. This study examined differences in virulence among Australian U. viciae-fabae isolates collected from various locations and established a differential set of faba bean genotypes. Ten rust isolates were collected from the major faba bean growing regions in Australia and single spore cultures produced. These cultures were subsequently used for assessing virulence on 40 diverse faba bean genotypes. Based on the host-pathogen interactions, 12 putative host genotypes were identified as a differential set. A nomenclature system was subsequently developed using the binary pathotype naming system. Based upon host-pathogen interactions, nine virulence patterns were detected, and the isolates were named using the new nomenclature. We report characterization and naming of U. viciae-fabae pathotypes using differential genotypes in Australia. This differential set will help identify and track the evolution of new virulence in pathogen population and will assist pyramiding of rust resistance genes.


Asunto(s)
Vicia faba , Asia , Australia , Basidiomycota , Europa (Continente) , Fitomejoramiento , Enfermedades de las Plantas
16.
Mol Breed ; 41(9): 54, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37309400

RESUMEN

The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen (Puccinia striiformis f. sp. tritici; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet 'S' (AvS) to generate 123 F7 recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named YrAW12. This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay. YrAW12 was mapped in the 754.9-763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene Yr72. QTL analysis suggested the involvement of four genomic regions which were named: QYr.sun-1BL/Yr29, QYr.sun-5AL, QYr.sun-5BL and QYr.sun-6DS, in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of QYr.sun-5AL (654.5 Mb) and QYr.sun-6DS (1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01248-7.

17.
Theor Appl Genet ; 133(11): 3049-3066, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32683473

RESUMEN

KEY MESSAGE: A stripe rust resistance QTL in durum wheat maps near the bread wheat Yr80 locus with the latter reduced to 15 candidate genes. Some wheat adult plant resistance (APR) genes provide partial resistance in the later stages of plant development to rust diseases and are an important component in protecting wheat crops from these fungal pathogens. These genes provide protection in both bread wheat and durum wheat. Here, we have mapped APR to wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, in a cross between durum cultivars Stewart and Bansi. Two resistance QTLs derived from the Stewart parent were identified in multi-generational field trials. One QTL is located on chromosome 1BL and maps to the previously identified Yr29/Lr46/Sr58/Pm39 multi-pathogen APR locus. The second locus, located on chromosome 3BL, maps near the recently described bread wheat APR gene, Yr80. Fine mapping in durum and bread wheat families shows that the durum 3BL locus and Yr80 are closely located, with the later APR gene reduced to 15 candidate genes present in the Chinese Spring genome sequence. Distorted segregation of the durum 3BL region was observed with the Stewart locus preferentially transmitted through pollen when compared with the equivalent Bansi region.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Marcadores Genéticos , Enfermedades de las Plantas/microbiología , Triticum/microbiología
18.
Theor Appl Genet ; 133(9): 2695-2712, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32504212

RESUMEN

We utilized 2300 wheat accessions including worldwide landraces, cultivars and primary synthetic-derived germplasm with three Australian cultivars: Annuello, Yitpi and Correll, to investigate field-based resistance to leaf (Lr) rust, stem (Sr) rust and stripe (Yr) rust diseases across a range of Australian wheat agri-production zones. Generally, the resistance in the modern Australian cultivars, synthetic derivatives, South and North American materials outperformed other geographical subpopulations. Different environments for each trait showed significant correlations, with average r values of 0.53, 0.23 and 0.66 for Lr, Sr and Yr, respectively. Single-trait genome-wide association studies (GWAS) revealed several environment-specific and multi-environment quantitative trait loci (QTL). Multi-trait GWAS confirmed a cluster of Yr QTL on chromosome 3B within a 4.4-cM region. Linkage disequilibrium and comparative mapping showed that at least three Yr QTL exist within the 3B cluster including the durable rust resistance gene Yr30. An Sr/Lr QTL on chromosome 3D was found mainly in the synthetic-derived germplasm from Annuello background which is known to carry the Agropyron elongatum 3D translocation involving the Sr24/Lr24 resistance locus. Interestingly, estimating the SNP effects using a BayesR method showed that the correlation among the highest 1% of QTL effects across environments (excluding GWAS QTL) had significant correlations, with average r values of 0.26, 0.16 and 0.55 for Lr, Sr and Yr, respectively. These results indicate the importance of small effect QTL in achieving durable rust resistance which can be captured using genomic selection.


Asunto(s)
Resistencia a la Enfermedad/genética , Ambiente , Genética de Población , Enfermedades de las Plantas/genética , Triticum/genética , Australia , Basidiomycota/patogenicidad , Mapeo Cromosómico , Cruzamientos Genéticos , Estudios de Asociación Genética , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Triticum/microbiología
19.
Theor Appl Genet ; 132(11): 3169-3176, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31463519

RESUMEN

KEY MESSAGE: Stripe rust resistance gene, Yr82, was mapped in chromosome 3BL using SNP markers. Yr82 interacted with Yr29 to produce lower stripe rust responses at the adult plant stage. Landrace Aus27969 produced low infection types against Australian Puccinia striiformis f. sp. tritici (Pst) pathotypes. A recombinant inbred line (RIL) F7 population from the Aus27969/Avocet S cross was developed. Monogenic segregation for seedling stripe rust response was observed among the RIL population, and the resistance locus was named Yr82. Bulk segregant analysis performed using the iSelect wheat 90 K Infinium SNP array located Yr82 in the long arm of chromosome 3B. The RIL population was screened against stripe rust under field conditions and was genotyped with targeted genotyping-by-sequencing assay. QTL analysis detected the involvement of chromosomes 1B and 3B in controlling stripe rust resistance carried by Aus27969. Incorporation of Yr82 and marker SNPLr46G22 into the linkage map showed that the QTL in 1B and 3B represented Yr29 and Yr82, respectively. Kompetitive allele-specific PCR (KASP) markers sun KASP_300 and KASP_8775 flanked Yr82 distally and proximally, respectively, each at 2 cM distance. These Yr82-linked markers were polymorphic among 84% of Australian cultivars and can be used for marker-assisted selection of Yr82.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Australia , Mapeo Cromosómico , Cruzamientos Genéticos , Marcadores Genéticos , Genotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/microbiología
20.
Plant Dis ; 103(6): 1166-1171, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30998448

RESUMEN

The deployment of diverse sources of resistance in new cultivars underpins durable control of rust diseases. Aus27430 exhibited a moderate level of stripe rust resistance against Puccinia striiformis f. sp. tritici (Pst) pathotypes currently prevalent in Australia. Aus27430 was crossed with the susceptible parent Avocet S (AvS) and subsequent filial generations were raised. Monogenic segregation observed among Aus27430/AvS F3 families was confirmed through stripe rust screening of an F6 recombinant inbred line (RIL) population, and the resistance locus was temporarily named YrAW5. Selective genotyping using an Illumina iSelect 90K wheat SNP bead chip array located YrAW5 in chromosome 6A. Genetic mapping of the RIL population with linked 90K SNPs that were converted into PCR-based marker assays, as well as SSR markers previously mapped to chromosome 6A, confirmed the chromosomal assignment for YrAW5. Comparative analysis of other stripe rust resistance genes located in chromosome 6A led to the formal designation of YrAW5 as Yr81. Tests with a marker linked with Yr18 also demonstrated the presence of this gene in Aus27430. Yr18 interacted with Yr81 to produce stripe rust responses lower than those produced by RILs carrying these genes individually. Although gwm459 showed higher recombination with Yr81 compared with the other flanking marker KASP_3077, it amplified the AvS allele in 80 cultivars, whereas KASP_3077 amplified AvS allele in 67 cultivars. Both markers can be used in marker-assisted selection after confirming parental polymorphism.


Asunto(s)
Cromosomas de las Plantas , Resistencia a la Enfermedad , Triticum , Australia , Basidiomycota/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Marcadores Genéticos/genética , Triticum/genética , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...