Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 196: 106744, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471595

RESUMEN

The use of natural pulmonary surfactants (PS) as a drug delivery vehicle for biologics is a more recent therapeutic modality. Herein, we tested different contents of PS regarding their physicochemical properties under stress conditions. The PS content of 12.25 mg/ml (Formulation B) showed desired properties such as an isotonic osmolality ∼300 mOsm/kg and an acceptable viscosity of 8.61 cSt, being lower than in commercially available PS solutions. Formulation B passed the specifications of surface lowering capacities of >80 % total lung capacity and physiologically desired formulation properties were independent of the antibody used in the composition. The identified formulation showed the capability of significantly increasing the oxygen saturation in ex vivo isolated perfused rat lungs, compared to a control and up to 30 min post lavage. In the in vivo setting, we showed that intratracheal administration of a human mAB with and without pulmonary surfactant led to higher amounts of delivered antibody within the alveolar tissue compared to intravenous administration. The antibody with the PS formulation remained longer in the alveolar tissues than the antibody without the PS formulation. Further, SARS-CoV-2 infected Golden Syrian hamsters showed that the intranasally applied antibody reached the site of infection in the alveoli and could be detected in the alveolar region 24 h after the last administration. With this work, we demonstrated that pulmonary surfactants can be used as a pulmonary drug delivery mechanism for antibodies and may subsequently improve the antibody efficacy by increasing the residence time at the desired site of action in the alveolar tissue.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37978162

RESUMEN

The field of nasal drug delivery gained enormously on interest over the past decade. Performing nasal in vivo studies is expensive and time-consuming, but also unfeasible for an initial high-throughput compound and formulation screening. Therefore, the development of fast and high-throughput in vitro models to screen compounds for their permeability through the nasal epithelium and mucosa is constantly expanding. Yet, the protocols used for nasal in vitro permeability studies are varying, which limits the comparability and reproducibility of generated data. This project aimed to elucidate the influence of different culture and assay parameters of RPMI 2650 cells grown under air-liquid interface (ALI) conditions on the transepithelial electrical resistance (TEER) and apparent permeability (Papp) values of five selected reference compounds, covering the range of low to moderate to high permeability. The influence of the passage number, seeding density, and timepoint of airlift was minimal in our approach, while the substrate pore density had a significant influence on the Papp values of carbamazepine, propranolol, and metoprolol, classified as highly permeable compounds, but not on atenolol and aciclovir. Elevation of the experimental concentration of carbamazepine, propranolol, and metoprolol in the donor compartment had an increasing effect on the Papp values, while prolonging the assay time did not have a significant influence. Based on the results reported here, RPMI 2650 cells cultured under ALI conditions offer the possibility of a standardized high-throughput screening model for small molecules and their formulations for in vitro drug permeation studies to predict and select optimal conditions for their nasal delivery.

3.
Acta Histochem ; 125(7): 152077, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37523787

RESUMEN

Even after more than two years of intensive research, not all of the pathophysiological processes of Coronavirus Disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, have been fully elucidated. The initial virus-host interaction at the respiratory epithelium plays a crucial role in the course and progression of the infection, and is highly dependent on the glycosylation pattern of the host cell and of the secreted mucins. Glycans are polysaccharides that can be attached to proteins and thereby add to their stability and functionality. Lectins are glycan-binding proteins that recognize specific glycan motifs, and lectin histochemistry is a suitable tool to visualize and examine glycosylation pattern changes in tissues. In this study we used lectins with different glycan-specificities for the visualization of glycosylation pattern changes in the respiratory tract of SARS-CoV-2 infected Golden Syrian hamsters. While some lectins (LEL, STL) enable the visualization of the damage to alveolar type 1 pneumocytes, other lectins, e.g., GSLI, visualized the loss and subsequent hyperplasia of type 2 pneumocytes. UEAI staining was co-localized with KI67, a proliferation marker. Double staining of lectins LEL, STL and WGA with specific immune cell markers (Iba1, CD68) showed co-localization and the dominant infiltration of monocyte-derived macrophages into infected alveolar tissue. The elucidation of the glycosylation pattern of the respiratory tract cells in uninfected and infected Golden Syrian hamsters revealed physiological and pathological aspects of the disease that may open new possibilities for therapeutic development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA