Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Pathogens ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668288

RESUMEN

The surveillance of migratory waterbirds (MWs) for avian influenza virus (AIV) is indispensable for the early detection of a potential AIV incursion into poultry. Surveying AIV infections and virus subtypes in understudied MW species could elucidate their role in AIV ecology. Oropharyngeal-cloacal (OPC) swabs were collected from non-mallard MWs between 2006 and 2011. OPC swabs (n = 1158) that molecularly tested positive for AIV (Cts ≤ 32) but tested negative for H5 and H7 subtypes were selected for virus isolation (VI). The selected samples evenly represented birds from all four North American flyways (Pacific, Central, Mississippi, and Atlantic). Eighty-seven low pathogenic AIV isolates, representing 31 sites in 17 states, were recovered from the samples. All isolates belonged to the North American lineage. The samples representing birds from the Central Flyway had the highest VI positive rate (57.5%) compared to those from the other flyways (10.3-17.2%), suggesting that future surveillance can focus on the Central Flyway. Of the isolates, 43.7%, 12.6%, and 10.3% were obtained from blue-winged teal, American wigeon, and American black duck species, respectively. Hatch-year MWs represented the majority of the isolates (70.1%). The most common H and N combinations were H3N8 (23.0%), H4N6 (18.4%), and H4N8 (18.4%). The HA gene between non-mallard and mallard MW isolates during the same time period shared 85.5-99.5% H3 identity and 89.3-99.7% H4 identity. Comparisons between MW (mallard and non-mallard) and poultry H3 and H4 isolates also revealed high similarity (79.0-99.0% and 88.7-98.4%), emphasizing the need for continued AIV surveillance in MWs.

2.
J Virol Methods ; 308: 114594, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35931229

RESUMEN

The surveillance of migratory wild birds (MWBs) for avian influenza virus (AIV) allows detecting the emergence of highly pathogenic AIV that can infect domestic poultry and mammals, new subtypes, and antigenic/genetic variants. The current AIV surveillance system for MWBs in the United States is based on virus isolation (VI) followed by sequencing isolates. This system primarily focuses on the early detection of H5 and H7 AIVs. However, it is suboptimal in assessing diverse AIV subtypes at any given time because of the low VI success rate. To improve such a shortfall, a SYBR® Green-based real-time reverse transcription-polymerase chain reaction (rtRT-PCR) panel was developed for direct HA subtyping of AIVs in oropharyngeal-cloacal (OPC) swabs from MWBs. Under optimal conditions, the PCR panel detected AIVs of all 16 different HA subtypes with an average limit of detection of 102.6 copies/reaction (2 µl of extract). In testing 90 OPC swabs from 13 MWB species, the PCR provided a significantly faster turnaround of results and demonstrated the presence of more subtypes and concurrent infection among MWBs compared to what the current surveillance testing algorithm showed. In conclusion, newly developed SYBR® Green rtRT-PCR panel can be a useful tool for monitoring MWBs for AIVs.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Hemaglutininas , Mamíferos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
3.
Virology ; 573: 111-117, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35751973

RESUMEN

Influenza D virus (IDV) infections have been identified worldwide in cattle, swine, camelid, and small ruminants, mostly in domestic livestock. Here we report that the wild white-tailed deer in North America were exposed to IDVs, suggesting IDVs infect a wide range of hosts including wild animal populations.


Asunto(s)
Ciervos , Infecciones por Orthomyxoviridae , Thogotovirus , Animales , Bovinos , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Rumiantes , Porcinos
4.
J Vet Diagn Invest ; 33(2): 253-260, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33550926

RESUMEN

We report whole-genome sequencing of influenza A virus (IAV) with 100% diagnostic sensitivity and results available in <24-48 h using amplicon-based nanopore sequencing technology (MinION) on clinical material from wild waterfowl (n = 19), commercial poultry (n = 4), and swine (n = 3). All 8 gene segments of IAV including those from 14 of the 18 recognized hemagglutinin subtypes and 9 of the 11 neuraminidase subtypes were amplified in their entirety at >500× coverage from each of 16 reference virus isolates evaluated. Subgenomic viral sequences obtained in 3 cases using Sanger sequencing as the reference standard were identical to those obtained when sequenced using the MinION approach. An inter-laboratory comparison demonstrated reproducibility when comparing 2 independent laboratories at ≥99.8% across the entirety of the IAV genomes sequenced.


Asunto(s)
Enfermedades de las Aves/diagnóstico , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/diagnóstico , Secuenciación de Nanoporos/veterinaria , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/diagnóstico , Secuenciación Completa del Genoma/veterinaria , Animales , Animales Salvajes , Enfermedades de las Aves/virología , Pollos , Patos , Virus de la Influenza A/genética , Gripe Aviar/virología , Secuenciación de Nanoporos/métodos , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/virología , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/virología , Sus scrofa , Porcinos , Enfermedades de los Porcinos/virología , Pavos , Secuenciación Completa del Genoma/métodos
5.
PLoS Pathog ; 14(12): e1007417, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30507946

RESUMEN

Genetic reassortment between influenza A viruses (IAVs) facilitate emergence of pandemic strains, and swine are proposed as a "mixing vessel" for generating reassortants of avian and mammalian IAVs that could be of risk to mammals, including humans. However, how a transmissible reassortant emerges in swine are not well understood. Genomic analyses of 571 isolates recovered from nasal wash samples and respiratory tract tissues of a group of co-housed pigs (influenza-seronegative, avian H1N1 IAV-infected, and swine H3N2 IAV-infected pigs) identified 30 distinct genotypes of reassortants. Viruses recovered from lower respiratory tract tissues had the largest genomic diversity, and those recovered from turbinates and nasal wash fluids had the least. Reassortants from lower respiratory tracts had the largest variations in growth kinetics in respiratory tract epithelial cells, and the cold temperature in swine nasal cells seemed to select the type of reassortant viruses shed by the pigs. One reassortant in nasal wash samples was consistently identified in upper, middle, and lower respiratory tract tissues, and it was confirmed to be transmitted efficiently between pigs. Study findings suggest that, during mixed infections of avian and swine IAVs, genetic reassortments are likely to occur in the lower respiratory track, and tissue tropism is an important factor selecting for a transmissible reassortant.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Recombinación Genética/genética , Tropismo Viral , Animales , Coinfección , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/transmisión , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Infecciones del Sistema Respiratorio/virología , Porcinos
6.
Emerg Infect Dis ; 24(6): 1020-1028, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29774857

RESUMEN

Influenza D virus (IDV) has been identified in domestic cattle, swine, camelid, and small ruminant populations across North America, Europe, Asia, South America, and Africa. Our study investigated seroprevalence and transmissibility of IDV in feral swine. During 2012-2013, we evaluated feral swine populations in 4 US states; of 256 swine tested, 57 (19.1%) were IDV seropositive. Among 96 archived influenza A virus-seropositive feral swine samples collected from 16 US states during 2010-2013, 41 (42.7%) were IDV seropositive. Infection studies demonstrated that IDV-inoculated feral swine shed virus 3-5 days postinoculation and seroconverted at 21 days postinoculation; 50% of in-contact naive feral swine shed virus, seroconverted, or both. Immunohistochemical staining showed viral antigen within epithelial cells of the respiratory tract, including trachea, soft palate, and lungs. Our findings suggest that feral swine might serve an important role in the ecology of IDV.


Asunto(s)
Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Thogotovirus , Animales , Femenino , Genotipo , Geografía Médica , Hemaglutinación , Pruebas de Hemaglutinación , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Porcinos/diagnóstico , Thogotovirus/clasificación , Thogotovirus/genética , Thogotovirus/inmunología , Estados Unidos/epidemiología , Carga Viral , Esparcimiento de Virus , Zoonosis
7.
J Wildl Dis ; 54(3): 450-459, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29715063

RESUMEN

From 2011 to 2017, 4,534 serum samples from 13 wildlife species collected across the US and in one territory (US Virgin Islands) were tested for exposure to Leptospira serovars Bratislava, Canicola, Grippotyphosa, Hardjo, Icterohaemorrhagiae, and Pomona. Of 1,759 canids, 1,043 cervids, 23 small Indian mongooses ( Herpestes auropunctatus), 1,704 raccoons ( Procyon lotor), and five striped skunks ( Mephitis mephitis), 27.0, 44.4, 30.4, 40.8, and 60%, respectively, were antibody positive for any of the six serovars. The most commonly detected serovars across all species were Bratislava and Grippotyphosa. Our results indicate that Leptospira titers are very common in a wide variety of wildlife species. These species may act as important reservoirs in the epidemiological cycle of the pathogen. Additional studies to determine the relationship between serologic evidence and shedding of the pathogen by wildlife are necessary to better understand the risk.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Leptospira/inmunología , Mamíferos/sangre , Animales , Animales Salvajes , Leptospirosis/sangre , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Serogrupo , Estados Unidos/epidemiología , Islas Virgenes de los Estados Unidos/epidemiología
8.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733290

RESUMEN

Influenza A viruses (IAVs) in swine can cause sporadic infections and pandemic outbreaks among humans, but how avian IAV emerges in swine is still unclear. Unlike domestic swine, feral swine are free ranging and have many opportunities for IAV exposure through contacts with various habitats and animals, including migratory waterfowl, a natural reservoir for IAVs. During the period from 2010 to 2013, 8,239 serum samples were collected from feral swine across 35 U.S. states and tested against 45 contemporary antigenic variants of avian, swine, and human IAVs; of these, 406 (4.9%) samples were IAV antibody positive. Among 294 serum samples selected for antigenic characterization, 271 cross-reacted with ≥1 tested virus, whereas the other 23 did not cross-react with any tested virus. Of the 271 IAV-positive samples, 236 cross-reacted with swine IAVs, 1 with avian IAVs, and 16 with avian and swine IAVs, indicating that feral swine had been exposed to both swine and avian IAVs but predominantly to swine IAVs. Our findings suggest that feral swine could potentially be infected with both avian and swine IAVs, generating novel IAVs by hosting and reassorting IAVs from wild birds and domestic swine and facilitating adaptation of avian IAVs to other hosts, including humans, before their spillover. Continued surveillance to monitor the distribution and antigenic diversities of IAVs in feral swine is necessary to increase our understanding of the natural history of IAVs.IMPORTANCE There are more than 5 million feral swine distributed across at least 35 states in the United States. In contrast to domestic swine, feral swine are free ranging and have unique opportunities for contact with wildlife, livestock, and their habitats. Our serological results indicate that feral swine in the United States have been exposed to influenza A viruses (IAVs) consistent with those found in both domestic swine and wild birds, with the predominant infections consisting of swine-adapted IAVs. Our findings suggest that feral swine have been infected with IAVs at low levels and could serve as hosts for the generation of novel IAVs at the interface of feral swine, wild birds, domestic swine, and humans.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Animales , Animales Domésticos/virología , Aves , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Filogenia , Porcinos , Estados Unidos
10.
Avian Dis ; 60(1 Suppl): 346-53, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27309078

RESUMEN

Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.


Asunto(s)
Variación Antigénica , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Animales Salvajes/virología , Anseriformes/clasificación , Anseriformes/virología , Embrión de Pollo , Pollos , Pruebas de Inhibición de Hemaglutinación , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/virología , América del Norte , Infecciones por Orthomyxoviridae/virología , Filogenia , Enfermedades de las Aves de Corral/virología , Porcinos , Enfermedades de los Porcinos/virología
11.
Sci Rep ; 6: 20688, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26858078

RESUMEN

Subtype H7 avian-origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Here we antigenically and genetically characterized 93 AIV isolates from North America (85 from migratory waterfowl [1976-2010], 7 from domestic poultry [1971-2012], and 1 from a seal [1980]). The hemagglutinin gene of these H7 viruses are separated from those from Eurasia. Gradual accumulation of nucleotide and amino acid substitutions was observed in the hemagglutinin of H7 AIVs from waterfowl and domestic poultry. Genotype characterization suggested that H7 AIVs in wild birds form diverse and transient internal gene constellations. Serologic analyses showed that the 93 isolates cross-reacted with each other to different extents. Antigenic cartography showed that the average antigenic distance among them was 1.14 units (standard deviation [SD], 0.57 unit) and that antigenic diversity among the H7 isolates we tested was limited. Our results suggest that the continuous genetic evolution has not led to significant antigenic diversity for H7 AIVs from North America. These findings add to our understanding of the natural history of IAVs and will inform public health decision-making regarding the threat these viruses pose to humans and poultry.


Asunto(s)
Variación Antigénica , Antígenos Virales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H7N3 del Virus de la Influenza A , Gripe Aviar , Animales , Variación Antigénica/genética , Variación Antigénica/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Embrión de Pollo , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H7N3 del Virus de la Influenza A/genética , Subtipo H7N3 del Virus de la Influenza A/inmunología , Gripe Aviar/epidemiología , Gripe Aviar/genética , Gripe Aviar/inmunología , América del Norte
12.
J Gen Virol ; 96(9): 2569-2578, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26297148

RESUMEN

Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic 'mixing vessels' for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations.


Asunto(s)
Animales Salvajes/virología , Anticuerpos Antivirales/sangre , Subtipo H3N2 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Esparcimiento de Virus , Animales , Animales Salvajes/sangre , Animales Salvajes/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/sangre , Enfermedades de los Porcinos/diagnóstico
13.
J Wildl Dis ; 51(3): 754-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25973630

RESUMEN

Avian bornaviruses, recently described members of the family Bornaviridae, have been isolated from captive parrots and passerines as well as wild waterfowl in which they may cause lethal neurologic disease. We report detection of avian bornavirus RNA in the brains of apparently healthy gulls. We tested 439 gull brain samples from 18 states, primarily in the northeastern US, using a reverse-transcriptase PCR assay with primers designed to detect a conserved region of the bornavirus M gene. Nine birds yielded a PCR product of appropriate size. Sequencing of PCR products indicated that the virus was closely related to aquatic bird bornavirus 1 (ABBV-1). Viral RNA was detected in Herring Gulls (Larus argentatus), Ring-billed Gulls (Larus delawarensis), and Laughing Gulls (Leucophaeus atricilla). Eight of the nine positive birds came from the New York/New Jersey area. One positive Herring Gull came from New Hampshire. Histopathologic examination of one well-preserved brain from a Herring Gull from Union County New Jersey, showed a lymphocytic encephalitis similar to that observed in bornavirus-infected parrots and geese. Bornavirus N protein was confirmed in two Herring Gull brains by immunohistochemistry. Thus ABBV-1 can infect gulls and cause encephalitic brain lesions similar to those observed in other birds.


Asunto(s)
Enfermedades de las Aves/virología , Bornaviridae/fisiología , Charadriiformes/virología , Infecciones por Mononegavirales/veterinaria , Animales , Enfermedades de las Aves/epidemiología , Encéfalo/patología , Encéfalo/virología , Infecciones por Mononegavirales/epidemiología , Infecciones por Mononegavirales/virología , New England/epidemiología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria
14.
Can J Vet Res ; 79(1): 74-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25673913

RESUMEN

Feral swine (Sus scrofa) are widely distributed in the United States. In 2011 and 2012, serum samples and tonsils were recovered from 162 and 37 feral swine, respectively, in the US to evaluate exposure to important swine endemic pathogens. Antibodies against porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) were found in 2.5% and 25.3% of tested sera, respectively. Positive serological reactions against Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae have been detected in 19.7% and 69.7% of animals. More than 15% of animals presented antibodies against these 2 pathogens simultaneously. Most animals were also seropositive for Lawsonia intracellularis. Feral swine can also be involved in transmission of zoonotic agents. Almost 50% of animals possessed antibodies against Salmonella. In addition, 94.4% of animals were carriers of Streptococcus suis in their tonsils. In conclusion, feral swine may be considered as a potential reservoir for different endemic diseases in domestic pigs, as well as for important zoonotic agents.


Les porcs sauvages (Sus scrofa) sont largement distribués aux États-Unis. En 2011 et 2012, aux États-Unis des échantillons de sérum et d'amygdales furent obtenus de 162 et 37 porcs sauvages, respectivement, afin d'évaluer l'exposition à d'importants agents pathogènes porcins endémiques. Des anticorps contre le virus du syndrome reproducteur et respiratoire porcin (VSRRP) et le circovirus porcin de type 2 (CVP2) furent détectés chez 2,5 % et 25,3 % des sérums testés, respectivement. Des réactions sérologiques positives envers Mycoplasma hyopneumoniae et Actinobacillus pleuropneumoniae ont été détectées chez 19,7 % et 69,7 % des animaux. Plus de 15 % des animaux avaient des anticorps contre ces deux agents pathogènes simultanément. La plupart des animaux étaient également séropositifs pour Lawsonia intracellularis. Les porcs sauvages peuvent également être impliqués dans la transmission d'agents zoonotiques. Près de 50 % des animaux avaient des anticorps contre Salmonella. De plus, 94,4 % des animaux étaient porteurs de Streptococcus suis dans leurs amygdales. En conclusion, les porcs sauvages peuvent être considérés comme des réservoirs potentiels de différentes maladies endémiques des porcs domestiques, aussi bien que d'agents zoonotiques importants.(Traduit par Docteur Serge Messier).


Asunto(s)
Animales Salvajes/microbiología , Enfermedades de los Porcinos/epidemiología , Zoonosis/epidemiología , Animales , Animales Salvajes/sangre , Anticuerpos Antibacterianos/sangre , Anticuerpos Antivirales/sangre , Reservorios de Enfermedades/microbiología , Estudios Seroepidemiológicos , Sus scrofa , Porcinos , Enfermedades de los Porcinos/sangre , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/microbiología , Estados Unidos/epidemiología , Zoonosis/sangre , Zoonosis/diagnóstico , Zoonosis/microbiología
15.
PLoS One ; 9(8): e104360, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25116079

RESUMEN

Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies.


Asunto(s)
Animales Salvajes , Aves/virología , Virus de la Influenza A , Gripe Aviar/epidemiología , Animales , Geografía Médica , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Vigilancia de la Población , Prevalencia , Estados Unidos/epidemiología , Proteínas de la Matriz Viral/genética
16.
Infect Genet Evol ; 26: 185-93, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24910106

RESUMEN

The Southwest United States, including Arizona and New Mexico, has a diverse climate and is home to many different avian species. We sequenced the hemagglutinin (HA) gene of twenty influenza specimens for the years 2007-2009. This included four from Arizona, and sixteen from New Mexico. We analyzed the sequences and determined the following HA subtypes: H3, H4, H6, H8, and H11. For each subtype, we combined our virus sequences with those from a public database, and inferred phylogeographic models of influenza diffusion. Statistical phylogeography indicated that overall evolutionary diffusion of avian influenza viruses is geographically structured (p<0.05). In addition, we found that diffusion to the Southwest was often from nearby states including California. For H3, H4 and H6, the intra-flyway gene flow rates were significantly (p<0.001) higher than those of inter-flyway. Such rate difference was also observed in H8 and H11, yet, without statistical significance (p=0.132, p=0.190, respectively). Excluding any one flyway from the calculation generated similar results, suggesting that such barrier effect on gene flow rates is not exclusively produced by any single flyway. We also calculated the Bayes factor test for the significant non-zero rates between states and identified significant routes both within and across flyways. Such inter-flyway spread of influenza was probably the result of birds from four flyways co-mingling on breeding grounds in northern regions or marshaling on staging areas post breeding in Canada or Alaska, before moving south each fall. This study provides an initial analysis of evolutionary diffusion of avian influenza virus to and from the Southwest United States. However, more sequences from this region need to be generated to determine the role of host migration and other factors on influenza diffusion.


Asunto(s)
Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Migración Animal , Animales , Aves , Genotipo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Filogeografía , Sudoeste de Estados Unidos/epidemiología
17.
Emerg Infect Dis ; 20(5): 843-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24751326

RESUMEN

To determine whether, and to what extent, influenza A subtype H3 viruses were present in feral swine in the United States, we conducted serologic and virologic surveillance during October 2011-September 2012. These animals were periodically exposed to and infected with A(H3N2) viruses, suggesting they may threaten human and animal health.


Asunto(s)
Virus de la Influenza A/clasificación , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Animales , Femenino , Geografía , Historia del Siglo XXI , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Gripe Humana/virología , Masculino , Vigilancia en Salud Pública , Serotipificación , Porcinos , Enfermedades de los Porcinos/historia , Enfermedades de los Porcinos/virología , Estados Unidos/epidemiología
18.
Genome Announc ; 1(5)2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24158553

RESUMEN

A recent survey among wild birds demonstrated the presence of a unique genotype of avian bornavirus (ABV) in wild geese and swans in North America. Here, we report the first complete genome sequence of an avian bornavirus of the goose genotype.

19.
J Wildl Dis ; 49(3): 709-13, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23778627

RESUMEN

Although pseudorabies virus can affect a wide range of mammalian and avian hosts, swine are the only natural hosts of the virus. The US commercial swine industry obtained pseudorabies-free status in 2004, which was important because of the economic value of domestic swine production; however, feral swine remain competent hosts and represent a constant threat for reintroducing the virus into the commercial industry. To better assess feral swine infection status, we collected 8,498 serum samples from feral swine across the United States between 1 October 2009 and 30 September 2012. Of these, 18% were antibody positive in 25 of 35 states where samples were collected, indicating that transmission risk is widespread.


Asunto(s)
Anticuerpos Antivirales/sangre , Reservorios de Enfermedades/veterinaria , Seudorrabia/epidemiología , Sus scrofa/virología , Enfermedades de los Porcinos/epidemiología , Animales , Animales Salvajes/virología , Reservorios de Enfermedades/virología , Femenino , Herpesvirus Suido 1/inmunología , Masculino , Estudios Seroepidemiológicos , Porcinos , Estados Unidos/epidemiología
20.
Integr Zool ; 7(1): 99-109, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22405453

RESUMEN

Plague is a zoonotic disease caused by the bacterium Yersinia pestis Lehmann and Neumann, 1896. Although it is essentially a disease of rodents, plague can also be transmitted to people. Historically, plague has caused massive morbidity and mortality events in human populations, and has recently been classified as a reemerging disease in many parts of the world. This public health threat has led many countries to set up wild and domestic animal surveillance programs in an attempt to monitor plague activity that could potentially spill over into human populations. Both China and the USA have plague surveillance programs in place, but the disease dynamics differ in each country. We present data on plague seroprevalence in wildlife and review different approaches for plague surveillance in the 2 countries. The need to better comprehend plague dynamics, combined with the fact that there are still several thousand human plague cases per year, make well-designed wildlife surveillance programs a critical part of both understanding plague risks to humans and preventing disease outbreaks in the future.


Asunto(s)
Peste/epidemiología , Yersinia pestis/fisiología , Animales , Animales Salvajes , Anticuerpos Antibacterianos/sangre , China/epidemiología , Humanos , Peste/microbiología , Peste/transmisión , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/microbiología , Enfermedades de los Roedores/transmisión , Roedores , Vigilancia de Guardia , Estudios Seroepidemiológicos , Estados Unidos/epidemiología , Yersinia pestis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...