Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
F S Sci ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838957

RESUMEN

OBJECTIVE: To evaluate oocyte retrieval experiences and side effects under minimally controlled ovarian stimulation (COS) treatment for in vitro maturation (IVM) of oocytes compared with conventional COS treatment. DESIGN: A retrospective survey study. SETTING: Clinical in vitro fertilization treatment center. PATIENT(S): Data were collected from subjects undergoing minimal COS treatment (n = 110; 600-800 IU follicle-stimulating hormone) for IVM of oocytes and conventional COS treatment for egg donation (n = 48; 1,800-2,600 IU follicle-stimulating hormone) from April 2022 to November 2023. INTERVENTION(S): Minimal and conventional COS treatments. MAIN OUTCOME MEASURE(S): The most common side effects experienced during ovarian stimulation and after oocyte pick-up, satisfaction level, and the likelihood of recommending or repeating minimal or conventional COS. Statistical analysis included Mann-Whitney U test and χ2 tests, with a significance level. RESULT(S): During minimal COS treatment, most subjects did not experience breast swelling (86%), pelvic or abdominal pain (76%), nausea or vomiting (96%), and bleeding (96%). After oocyte pick-up, the majority (75%) reported no pelvic or abdominal pain. The most common side effect was abdominal swelling (52%). Compared with conventional COS cycles, minimal COS subjects reported significantly less postretrieval pain, with 33% experiencing no pain (vs. 6%) and with a reduced severe level of pain (5% vs. 19%), leading to fewer subjects requiring pain medication (25% vs. 54%). Additionally, 85% of women were very satisfied with minimal stimulation treatment and would recommend or repeat the treatment. CONCLUSION(S): Reducing the hormonal dose for ovarian stimulation has a beneficial effect on subjects, suggesting the combination of minimal COS treatment with IVM techniques is a well-tolerated alternative for women who cannot or do not wish to undergo conventionally controlled ovarian hyperstimulation treatment.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38814543

RESUMEN

PURPOSE: Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS: Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS: OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION: The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.

3.
Hum Reprod ; 38(12): 2456-2469, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37815487

RESUMEN

STUDY QUESTION: Can in vitro maturation (IVM) and developmental competence of human oocytes be improved by co-culture with ovarian support cells (OSCs) derived from human-induced pluripotent stem cells (hiPSCs)? SUMMARY ANSWER: OSC-IVM significantly improves the rates of metaphase II (MII) formation and euploid Day 5 or 6 blastocyst formation, when compared to a commercially available IVM system. WHAT IS KNOWN ALREADY: IVM has historically shown highly variable performance in maturing oocytes and generating oocytes with strong developmental capacity, while limited studies have shown a positive benefit of primary granulosa cell co-culture for IVM. We recently reported the development of OSCs generated from hiPSCs that recapitulate dynamic ovarian function in vitro. STUDY DESIGN, SIZE, DURATION: The study was designed as a basic science study, using randomized sibling oocyte specimen allocation. Using pilot study data, a prospective sample size of 20 donors or at least 65 oocytes per condition were used for subsequent experiments. A total of 67 oocyte donors were recruited to undergo abbreviated gonadotropin stimulation with or without hCG triggers and retrieved cumulus-oocyte complexes (COCs) were allocated between the OSC-IVM or control conditions (fetal-like OSC (FOSC)-IVM or media-only IVM) in three independent experimental design formats. The total study duration was 1 April 2022 to 1 July 2023. PARTICIPANTS/MATERIALS, SETTING, METHODS: Oocyte donors between the ages of 19 and 37 years were recruited for retrieval after informed consent, with assessment of anti-Mullerian hormone, antral follicle count, age, BMI and ovarian pathology used for inclusion and exclusion criteria. In experiment 1, 27 oocyte donors were recruited, in experiment 2, 23 oocyte donors were recruited, and in experiment 3, 17 oocyte donors and 3 sperm donors were recruited. The OSC-IVM culture condition was composed of 100 000 OSCs in suspension culture with hCG, recombinant FSH, androstenedione, and doxycycline supplementation. IVM controls lacked OSCs and contained either the same supplementation, FSH and hCG only (a commercial IVM control), or FOSCs with the same supplementation (Media control). Experiment 1 compared OSC-IVM, FOSC-IVM, and a Media control, while experiments 2 and 3 compared OSC-IVM and a commercial IVM control. Primary endpoints in the first two experiments were the MII formation (i.e. maturation) rate and morphological quality assessment. In the third experiment, the fertilization and embryo formation rates were assessed with genetic testing for aneuploidy and epigenetic quality in blastocysts. MAIN RESULTS AND THE ROLE OF CHANCE: We observed a statistically significant improvement (∼1.5×) in maturation outcomes for oocytes that underwent IVM with OSCs compared to control Media-IVM and FOSC-IVM in experiment 1. More specifically, the OSC-IVM group yielded a MII formation rate of 68% ± 6.83% SEM versus 46% ± 8.51% SEM in the Media control (P = 0.02592, unpaired t-test). FOSC-IVM yielded a 51% ± 9.23% SEM MII formation rate which did not significantly differ from the media control (P = 0.77 unpaired t-test). Additionally, OSC-IVM yielded a statistically significant ∼1.6× higher average MII formation rate at 68% ± 6.74% when compared to 43% ± 7.90% in the commercially available IVM control condition (P = 0.0349, paired t-test) in experiment 2. Oocyte morphological quality between OSC-IVM and the controls did not significantly differ. In experiment 3, OSC-IVM oocytes demonstrated a statistically significant improvement in Day 5 or 6 euploid blastocyst formation per COC compared to the commercial IVM control (25% ± 7.47% vs 11% ± 3.82%, P = 0.0349 logistic regression). Also in experiment 3, the OSC-treated oocytes generated blastocysts with similar global and germline differentially methylated region epigenetic profiles compared commercial IVM controls or blastocysts after either conventional ovarian stimulation. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: While the findings of this study are compelling, the cohort size remains limited and was powered on preliminary pilot studies, and the basic research nature of the study limits generalizability compared to randomized control trials. Additionally, use of hCG-triggered cycles results in a heterogenous oocyte cohort, and potential differences in the underlying maturation state of oocytes pre-IVM may limit or bias findings. Further research is needed to clarify and characterize the precise mechanism of action of the OSC-IVM system. Further research is also needed to establish whether these embryos are capable of implantation and further development, a key indication of their clinical utility. WIDER IMPLICATIONS OF THE FINDINGS: Together, these findings demonstrate a novel approach to IVM with broad applicability to modern ART practice. The controls used in this study are in line with and have produced similar to findings to those in the literature, and the outcome of this study supports findings from previous co-culture studies that found benefits of primary granulosa cells on IVM outcomes. The OSC-IVM system shows promise as a highly flexible IVM approach that can complement a broad range of stimulation styles and patient populations. Particularly for patients who cannot or prefer not to undergo conventional gonadotropin stimulation, OSC-IVM may present a viable path for obtaining developmentally competent, mature oocytes. STUDY FUNDING/COMPETING INTEREST(S): A.D.N., A.B.F., A.G., B.P., C.A., C.C.K., F.B., G.R., K.S.P., K.W., M.M., P.C., S.P., and M.-J.F.-G. are shareholders in the for-profit biotechnology company Gameto Inc. P.R.J.F. declares paid consultancy for Gameto Inc. P.C. also declares paid consultancy for the Scientific Advisory Board for Gameto Inc. D.H.M. has received consulting services from Granata Bio, Sanford Fertility and Reproductive Medicine, Gameto, and Buffalo IVF, and travel support from the Upper Egypt Assisted Reproduction Society. C.C.K., S.P., M.M., A.G., B.P., K.S.P., G.R., and A.D.N. are listed on a patent covering the use of OSCs for IVM: U.S. Provisional Patent Application No. 63/492,210. Additionally, C.C.K. and K.W. are listed on three patents covering the use of OSCs for IVM: U.S. Patent Application No. 17/846,725, U.S Patent Application No. 17/846,845, and International Patent Application No.: PCT/US2023/026012. C.C.K., M.P.S., and P.C. additionally are listed on three patents for the transcription factor-directed production of granulosa-like cells from stem cells: International Patent Application No.: PCT/US2023/065140, U.S. Provisional Application No. 63/326,640, and U.S. Provisional Application No. 63/444,108. The remaining authors have no conflicts of interest to declare.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Células Madre Pluripotentes Inducidas , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Técnicas de Cocultivo , Hormona Folículo Estimulante/metabolismo , Gonadotropinas/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/metabolismo , Proyectos Piloto , Estudios Prospectivos , Semen
4.
Proc Natl Acad Sci U S A ; 120(37): e2306797120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37676910

RESUMEN

Regulatory T cells (Tregs) modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, we show that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. We found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of antisperm antibodies (ASA). In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects. Deciphering these immunoregulatory mechanisms may help to design new strategies to treat male infertility, as well as to identify potential targets for immunocontraception.


Asunto(s)
Semen , Linfocitos T Reguladores , Masculino , Animales , Ratones , Humanos , Espermatozoides , Tolerancia Inmunológica , Anticuerpos , Fertilidad
5.
Andrology ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572347

RESUMEN

INTRODUCTION: One of the most intriguing aspects of male reproductive physiology is the ability of the epididymis to prevent the mounting of immune responses against the onslaught of foreign antigens carried by spermatozoa while initiating very efficient immune responses versus stressors. Epithelial clear cells are strategically positioned to work in a concerted manner with region-specific heterogeneous subsets of mononuclear phagocytes to survey the epididymal barrier and regulate the balance between inflammation and immune tolerance in the post-testicular environment. OBJECTIVE: This review aims to describe how clear cells communicate with mononuclear phagocytes to contribute to the unique immune environment in which sperm mature and are stored in the epididymis. MATERIALS/METHODS: A comprehensive systematic review was performed. PubMed was searched for articles specific to clear cells, mononuclear phagocytes, and epididymis. Articles that did not specifically address the target material were excluded. RESULTS: In this review, we discuss the unexpected roles of clear cells, including the transfer of new proteins to spermatozoa via extracellular vesicles and nanotubes as they transit along the epididymal tubule; and we summarize the immune phenotype, morphology, and antigen capturing, processing, and presenting abilities of mononuclear phagocytes. Moreover, we present the current knowledge of immunoregulatory mechanisms by which clear cells and mononuclear phagocytes may contribute to the immune-privileged environment optimal for sperm maturation and storage. DISCUSSION AND CONCLUSION: Notably, we provide an in-depth characterization of clear cell-mononuclear phagocyte communication networks in the steady-state epididymis and in the presence of injury. This review highlights crucial concepts of mucosal immunology and cellcell interactions, all of which are critical but understudied facets of human male reproductive health.

6.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36293256

RESUMEN

Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.


Asunto(s)
Cromatina , Nucleosomas , Humanos , Masculino , Ratones , Animales , Cromatina/metabolismo , Acetilación , Nucleosomas/metabolismo , Histonas/metabolismo , Semen/metabolismo , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Ensamble y Desensamble de Cromatina , Procesamiento Proteico-Postraduccional , Espermátides/metabolismo , Protaminas/metabolismo
7.
Hum Reprod ; 37(8): 1712-1726, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35678707

RESUMEN

STUDY QUESTION: Is histone H4 acetylation (H4ac) altered in the seminiferous tubules of patients affected by testicular tumours? SUMMARY ANSWER: A considerable dysregulation of H4ac was detected in the cells of the seminiferous tubules adjacent to testicular tumours of different aetiology and prior to any treatment, while no comparable alterations were observed in patients with disrupted spermatogenesis. WHAT IS KNOWN ALREADY: Altered H4ac levels have been associated with a variety of testicular pathological conditions. However, no information has been available regarding potential alterations in the spermatogenic cells adjacent to the neoplasia in testicular tumour patients. STUDY DESIGN, SIZE, DURATION: A retrospective analysis using testicular sections from 33 men aged between 21 and 74 years old was performed. Three study groups were defined and subjected to double-blind evaluation: a control group with normal spermatogenesis (n = 6), patients with testicular tumours (n = 18) and patients with spermatogenic impairments (n = 8). One additional sample with normal spermatogenesis was used as a technical internal control in all evaluations. PARTICIPANTS/MATERIALS, SETTING, METHODS: Immunohistochemistry against H4ac and, when needed, Placental-like alkaline phosphatase and CD117, was performed on testicular sections. The H4ac H-score, based on the percentage of detection and signal intensity, was used as the scoring method for statistical analyses. Protein expression data from the Human Protein Atlas were used to compare the expression levels of predicted secreted proteins from testicular tumours with those present in the normal tissue. MAIN RESULTS AND THE ROLE OF CHANCE: We revealed, for the first time, a dramatic disruption of the spermatogenic H4ac pattern in unaffected seminiferous tubule cells from different testicular tumour patients prior to any antineoplastic treatment, as compared to controls (P < 0.05). Since no similar alterations were associated with spermatogenic impairments and the in silico analysis revealed proteins potentially secreted by the tumour to the testicular stroma, we propose a potential paracrine effect of the neoplasia as a mechanistic hypothesis for this dysregulation. LIMITATIONS, REASONS FOR CAUTION: Statistical analyses were not performed on the hypospermatogenesis and Leydig cell tumour groups due to limited availability of samples. WIDER IMPLICATIONS OF THE FINDINGS: To the best of our knowledge, this is the first report showing an epigenetic alteration in cells from active seminiferous tubules adjacent to tumour cells in testicular tumour patients. Our results suggest that, despite presenting spermatogenic activity, the global epigenetic dysregulation found in the testicular tumour patients could lead to molecular alterations of the male germ cells. Since testicular tumours are normally diagnosed in men at reproductive age, H4ac alterations might have an impact when these testicular tumour patients express a desire for fatherhood. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the European Union Marie Curie European Training Network actions and by grants to R.O. from the 'Ministerio de Economía y Competividad (Spain)' (fondos FEDER 'una manera de hacer Europa', PI13/00699, PI16/00346 and PI20/00936) and from EU-FP7-PEOPLE-2011-ITN289880. J.C. was supported by the Sara Borrell Postdoctoral Fellowship, Acción Estratégica en Salud, CD17/00109. J.C. is a Serra Húnter fellow (Universitat de Barcelona, Generalitat de Catalunya). F.B. has received grants from the Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario (Spain) (FPU15/02306). A.d.l.I. is supported by a fellowship of the Ministerio de Economía, Industria y Competitividad (Spain) (PFIS, FI17/00224). M.J. is supported by the Government of Catalonia (Generalitat de Catalunya, pla estratègic de recerca i innovació en salut, PERIS 2016-2020, SLT002/16/00337). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Histonas , Túbulos Seminíferos , Neoplasias Testiculares , Acetilación , Adulto , Anciano , Método Doble Ciego , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Túbulos Seminíferos/fisiopatología , Espermatogénesis , Neoplasias Testiculares/patología , Testículo/metabolismo , Adulto Joven
8.
Front Endocrinol (Lausanne) ; 13: 852661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663320

RESUMEN

Testosterone is essential to maintain qualitative spermatogenesis. Nonetheless, no studies have been yet performed in humans to analyze the testosterone-mediated expression of sperm proteins and their importance in reproduction. Thus, this study aimed to identify sperm protein alterations in male hypogonadism using proteomic profiling. We have performed a comparative proteomic analysis comparing sperm from fertile controls (a pool of 5 normogonadic normozoospermic fertile men) versus sperm from patients with secondary hypogonadism (a pool of 5 oligozoospermic hypogonadic patients due to isolated LH deficiency). Sperm protein composition was analyzed, after peptide labelling with Isobaric Tags, via liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) on an LTQ Velos-Orbitrap mass spectrometer. LC-MS/MS data were analyzed using Proteome Discoverer. Criteria used to accept protein identification included a false discovery rate (FDR) of 1% and at least 1 peptide match per protein. Up to 986 proteins were identified and, of those, 43 proteins were differentially expressed: 32 proteins were under-expressed and 11 were over-expressed in the pool of hypogonadic patients compared to the controls. Bioinformatic analyses were performed using UniProt Knowledgebase, and the Gene Ontology Consortium database based on PANTHER. Notably, 13 of these 43 differentially expressed proteins have been previously reported to be related to sperm function and spermatogenesis. Western blot analyses for A-Kinase Anchoring Protein 3 (AKAP3) and the Prolactin Inducible Protein (PIP) were used to confirm the proteomics data. In summary, a high-resolution mass spectrometry-based proteomic approach was used for the first time to describe alterations of the sperm proteome in secondary male hypogonadism. Some of the differential sperm proteins described in this study, which include Prosaposin, SMOC-1, SERPINA5, SPANXB1, GSG1, ELSPBP1, fibronectin, 5-oxoprolinase, AKAP3, AKAP4, HYDIN, ROPN1B, ß-Microseminoprotein and Protein S100-A8, could represent new targets for the design of infertility treatments due to androgen deficiency.


Asunto(s)
Hipogonadismo , Proteoma , Proteínas de Anclaje a la Quinasa A/metabolismo , Cromatografía Liquida , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Masculino , Proteoma/análisis , Proteómica/métodos , Espermatogénesis , Espermatozoides/metabolismo , Espectrometría de Masas en Tándem , Testosterona/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-32625170

RESUMEN

Follicle-stimulating hormone (FSH), a major regulator of spermatogenesis, has a crucial function in the development and function of the testis and it is extensively given as a fertility treatment to stimulate spermatogenesis. We analyzed the effects of different FSH preparations (α-follitropin, ß-follitropin, and urofollitropin) in combination with testosterone on porcine pre-pubertal Sertoli cells. To study the effect of the different FSH treatments in the Sertoli cell function we performed Real Time PCR analysis of AMH, inhibin B, and FSH-r, an ELISA assay for AMH and inhibin B, and a high-throughput comparative proteomic analysis. We verified that all three preparations induced a reduction of AMH in terms of mRNA and secreted proteins, and an increase of inhibin B in terms of mRNA in all the FSH formulations, while solely α-follitropin produced an increase of secreted inhibin B in the culture medium. Comparative proteomic analysis of the three FSH preparations identified 46 proteins, 11 up-regulated and 2 down-regulated. Surprisingly, the combination of testosterone with ß-follitropin specifically induced an up-regulation of eight specific secreted proteins. Our study, showing that the three different FSH preparations induce different effects, could offer the opportunity to shed light inside new applications to a personalized reproductive medicine.


Asunto(s)
Hormona Folículo Estimulante/administración & dosificación , Infertilidad Masculina/fisiopatología , Células de Sertoli/efectos de los fármacos , Células de Sertoli/fisiología , Animales , Células Cultivadas , Infertilidad Masculina/terapia , Masculino , Medicina de Precisión , Proteómica , Células de Sertoli/metabolismo , Sus scrofa , Testosterona/administración & dosificación
10.
Reprod Biomed Online ; 40(5): 700-710, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32444165

RESUMEN

RESEARCH QUESTION: Do alterations of human sperm protein profile affect embryo quality? DESIGN: Sperm proteins from 27 infertile couples undergoing intracytoplasmic sperm injection (ICSI) were extracted and digested. The resulting peptides were labelled using tandem mass tags, separated by two-dimensional liquid chromatography, and identified and quantified using tandem mass spectrometry. Subsequently, sperm protein and peptide abundance were statistically analysed for correlation with ICSI-derived embryo quality in the subset of idiopathic infertile couples. Detected correlations were further assessed in the subset of infertile patients with a known factor. RESULTS: The abundance of 18 individual sperm proteins was found to correlate with embryo quality after ICSI. Of note, a high percentage of poor-quality ICSI-derived embryos was associated with alterations in several components of the eight-membered chaperonin-containing T-complex, which plays an important role in the folding of many essential proteins. Additionally, the abundance of sperm proteins with known functions in embryogenesis, such as RUBVL1, also correlated with early embryo quality (r = -0.547; P = 0.028). Some of the correlations found in this study were validated using either proteomic data from infertile patients with a known factor or data from similar published studies. Analysis at the peptide level revealed the association of some correlations with specific post-translational modifications or isoforms. CONCLUSIONS: Our results support the hypothesis that the sperm proteome plays a role in early embryogenesis. Moreover, several sperm proteins have emerged as potential biomarkers that could predict the outcome of in-vitro assisted reproductive technologies, leading to the possibility of improved diagnosis of couples with idiopathic infertility.


Asunto(s)
Desarrollo Embrionario/fisiología , Proteoma , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides/metabolismo , Adulto , Fragmentación del ADN , Transferencia de Embrión , Femenino , Fertilización In Vitro , Humanos , Masculino , Embarazo , Índice de Embarazo , Proteómica
11.
J Clin Med ; 8(12)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816910

RESUMEN

In the grey zone of testosterone levels between 8 and 12 nmol/L, the usefulness of therapy is controversial; as such, markers of tissue action of androgens may be helpful in adjusting clinical decisions. To better understand the effect of the hypothalamic-pituitary-testicular axis on male accessory secretion, we performed a proteomic quantitative analysis of seminal plasma in patients with secondary hypogonadism, before and after testosterone replacement therapy (TRT). Ten male patients with postsurgical hypogonadotrophic hypogonadism were enrolled in this study, and five of these patients were evaluated after testosterone treatment. Ten men with proven fertility were selected as a control group. An aliquot of seminal plasma from each individual was subjected to an in-solution digestion protocol and analyzed using an Ultimate 3000 RSLC-nano HPLC apparatus coupled to a LTQ Orbitrap Elite mass spectrometer. The label-free quantitative analysis was performed via Precursor Ions Area Detector Node. Eleven proteins were identified as decreased in hypogonadic patients versus controls, which are primarily included in hydrolase activity and protein binding activity. The comparison of the proteome before and after TRT comes about within the discovery of six increased proteins. This is the primary application of quantitative proteomics pointed to uncover a cluster of proteins reflecting an impairment not only of spermatogenesis but of the epididymal and prostate epithelial cell secretory function in male hypogonadism. The identified proteins might represent putative clinical markers valuable within the follow-up of patients with distinctive grades of male hypogonadism.

12.
Mol Cell Proteomics ; 18(Suppl 1): S77-S90, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30518674

RESUMEN

Our aim was to define seminal plasma proteome signatures of infertile patients categorized according to their seminal parameters using TMT-LC-MS/MS. To that extent, quantitative proteomic data was analyzed following two complementary strategies: (1) the conventional approach based on standard statistical analyses of relative protein quantification values; and (2) a novel strategy focused on establishing stable-protein pairs. By conventional analyses, the abundance of some seminal plasma proteins was found to be positively correlated with sperm concentration. However, this correlation was not found for all the peptides within a specific protein, bringing to light the high heterogeneity existing in the seminal plasma proteome because of both the proteolytic fragments and/or the post-translational modifications. This issue was overcome by conducting the novel stable-protein pairs analysis proposed herein. A total of 182 correlations comprising 24 different proteins were identified in the normozoospermic-control population, whereas this proportion was drastically reduced in infertile patients with altered seminal parameters (18 in patients with reduced sperm motility, 0 in patients with low sperm concentration and 3 in patients with no sperm in the ejaculate). These results suggest the existence of multiple etiologies causing the same alteration in seminal parameters. Additionally, the repetition of the stable-protein pair analysis in the control group by adding the data from a single patient at a time enabled to identify alterations in the stable-protein pairs profile of individual patients with altered seminal parameters. These results suggest potential underlying pathogenic mechanisms in individual infertile patients, and might open up a window to its application in the personalized diagnostic of male infertility.


Asunto(s)
Infertilidad Masculina/metabolismo , Proteómica , Semen/metabolismo , Proteínas de Plasma Seminal/metabolismo , Genitales Masculinos/metabolismo , Genitales Masculinos/patología , Humanos , Masculino
13.
Syst Biol Reprod Med ; 64(6): 502-517, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29939100

RESUMEN

A very common conception about the function of the spermatozoon is that its unique role is to transmit the paternal genome to the next generation. Most of the sperm genome is known to be condensed in many species by protamines, which are small and extremely positively charged proteins (50-70% arginine) with the functions of streamlining the sperm cell and protecting its DNA. However, more recently, it has been shown in mammals that 2-10% of its mature sperm chromatin is also associated to a complex population of histones and chromatin-associated proteins differentially distributed in the genome. These proteins are transferred to the oocyte upon fertilization and may be involved in the epigenetic marking of the paternal genome. However, little information is so far available on the additional potential sperm chromatin proteins present in other protamine-containing non-mammalian vertebrates detected through high-throughput mass spectrometry. Thus, we started the present work with the goal of characterizing the mature sperm proteome of the European sea bass, with a particular focus on the sperm chromatin, chosen as a representative of non-mammalian vertebrate protamine-containing species. Proteins were isolated by acidic extraction from purified sperm cells and from purified sperm nuclei, digested with trypsin, and subsequently the peptides were separated using liquid chromatography and identified through tandem mass spectrometry. A total of 296 proteins were identified. Of interest, the presence of 94 histones and other chromatin-associated proteins was detected, in addition to the protamines. These results provide phylogenetically strategic information, indicating that the coexistence of histones, additional chromatin proteins, and protamines in sperm is not exclusive of mammals, but is also present in other protamine-containing vertebrates. Thus, it indicates that the epigenetic marking of the sperm chromatin, first demonstrated in mammals, could be more fundamental and conserved than previously thought. Abbreviations: AU-PAGE: acetic acid-urea polyacrylamide gel electrophoresis; CPC: chromosomal passenger complex; DTT: dithiothreitol; EGA: embryonic genome activation; FDR: false discovery rate; GO: Gene Ontology; IAA: iodoacetamide; LC: liquid chromatography; LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; MS: mass spectrometry; MS/MS: tandem mass spectrometry; MW: molecular weight; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffered saline; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TCA: trichloroacetic acid.


Asunto(s)
Lubina , Nucleoproteínas/análisis , Proteoma , Espermatozoides/química , Animales , Masculino
14.
Protein Pept Lett ; 25(5): 424-433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651936

RESUMEN

BACKGROUND: Protamines are the most abundant sperm nuclear proteins and pack approximately the 92-98% of the mammalian sperm DNA. In mammals, two types of protamines have been described, the Protamine 1 (P1) and the Protamine 2 (P2) family. The deregulation of the relative P1/P2 ratio has been correlated to DNA damage, alterations in seminal parameters, and low success rate of assisted reproduction techniques. Additionally, the extraction and analysis of protamines have been important to understand the fundamental aspects of the sperm chromatin structure and function, protamine sequence conservation among species, and sperm chromatin alterations present in infertile males. However, protamines show a particular chemical nature due to its special amino acid sequence, extremely rich in arginine and cysteine residues. Because of these peculiar characteristics of protamines, their extraction and analysis is not as straightforward as the analysis of other chromatin-associated proteins, for which many detailed protocols are already available. CONCLUSION: A step-by-step protocol was needed to facilitate protamine analysis to researchers interested in their implementation. Therefore, in order to contribute to fulfill this need, here we provide a detailed protocol, which should be useful to research teams and laboratories interested in the protamine field. In addition, we also briefly review the different studies published so far on protamine alterations and male infertility.


Asunto(s)
Protaminas/química , Protaminas/aislamiento & purificación , Espermatozoides/química , Animales , Humanos , Masculino , Protaminas/metabolismo , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...