Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 650: 123671, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38065345

RESUMEN

In the last few years, twin-screw wet granulation (TSWG) has become one of the key continuous pharmaceutical unit operations. Despite the many studies that have been performed, only little is known about the effect of the starting material properties on the stepwise granule formation along the length of the twin-screw granulator (TSG) barrel. Hence, this study obtained a detailed understanding of the effect of formulation properties (i.e., Active Pharmaceutical Ingredient (API) properties, formulation blend particle size distribution and formulation drug load) and process settings on granule formation in TSWG. An experimental set-up was used allowing the collection of granules at the different TSG compartments. Granules were characterized in terms of granule size, shape, binder liquid and API distributions. Liquid-to-solid (L/S) ratio was the only TSG process parameter impacting the granule size and shape evolution. Particle size and flow properties (e.g., flow rate index) had an important effect on the granule size and shape changes whereas water-related properties (e.g., water binding capacity and solubility) became influential at the last TSG compartments. The API solubility and L/S ratio were found to have a major impact on the distribution of binder liquid over the different granule size fractions. In the first TSG compartment (i.e., wetting compartment), the distribution of the API in the granules was influenced by its solubility in the granulation liquid.


Asunto(s)
Tornillos Óseos , Agua , Solubilidad , Tamaño de la Partícula , Humectabilidad , Composición de Medicamentos , Tecnología Farmacéutica
2.
Int J Pharm ; 646: 123493, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37813175

RESUMEN

This paper presents an application case of model-based design of experiments for the continuous twin-screw wet granulation and fluid-bed drying sequence. The proposed framework consists of three previously developed models. Here, we are testing the applicability of previously published unit operation models in this specific part of the production line to a new active pharmaceutical ingredient. Firstly, a T-shaped partial least squares regression model predicts d-values of granules after wet granulation with different process settings. Then, a high-resolution full granule size distribution is computed by a hybrid population balance and partial least squares regression model. Lastly, a mechanistic model of fluid-bed drying simulates drying time and energy efficiency, using the outputs of the first two models as a part of the inputs. In the application case, good operating conditions were calculated based on material and formulation properties as well as the developed process models. The framework was validated by comparing the simulation results with three experimental results. Overall, the proposed framework enables a process designer to find appropriate process settings with a less experimental workload. The framework combined with process knowledge reduced 73.2% of material consumption and 72.3% of time, especially in the early process development phase.


Asunto(s)
Tornillos Óseos , Desecación , Composición de Medicamentos/métodos , Tamaño de la Partícula , Simulación por Computador , Desecación/métodos , Tecnología Farmacéutica/métodos , Comprimidos
3.
Int J Pharm ; 645: 123391, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696346

RESUMEN

Twin-screw wet granulation (TSWG) stands out as a promising continuous alternative to conventional batch fluid bed- and high shear wet granulation techniques. Despite its potential, the impact of raw material properties on TSWG processability remains inadequately explored. Furthermore, the absence of supportive models for TSWG process development with new active pharmaceutical ingredients (APIs) adds to the challenge. This study tackles these gaps by introducing four partial least squares (PLS) models that approximate both the applicable liquid-to-solid (L/S) ratio range and resulting granule attributes (i.e., granule size and friability) based on initial material properties. The first two PLS models link the lowest and highest applicable L/S ratio for TSWG, respectively, with the formulation blend properties. The third and fourth PLS models predict the granule size and friability, respectively, from the starting API properties and applied L/S ratio for twin-screw wet granulation. By analysing the developed PLS models, water-related material properties (e.g., solubility, wettability, dissolution rate), as well as density and flow-related properties (e.g., flow function coefficient), were found to be impacting the TSWG processability. In addition, the applicability of the developed PLS models was evaluated by using them to propose suitable L/S ratio ranges (i.e., resulting in granules with the desired properties) for three new APIs and related formulations followed by an experimental validation thereof. Overall, this study helped to better understand the effect of raw material properties upon TSWG processability. Moreover, the developed PLS models can be used to propose suitable TSWG process settings for new APIs and hence reduce the experimental effort during process development.


Asunto(s)
Tornillos Óseos , Tecnología Farmacéutica , Tamaño de la Partícula , Solubilidad , Humectabilidad , Composición de Medicamentos/métodos , Tecnología Farmacéutica/métodos , Comprimidos
4.
Int J Pharm ; 640: 123040, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37172629

RESUMEN

In the pharmaceutical industry, twin-screw wet granulation has become a realistic option for the continuous manufacturing of solid drug products. Towards the efficient design, population balance models (PBMs) have been recognized as a tool to compute granule size distribution and understand physical phenomena. However, the missing link between material properties and the model parameters limits the swift applicability and generalization of new active pharmaceutical ingredients (APIs). This paper proposes partial least squares (PLS) regression models to assess the impact of material properties on PBM parameters. The parameters of the compartmental one-dimensional PBMs were derived for ten formulations with varying liquid-to-solid ratios and connected with material properties and liquid-to-solid ratios by PLS models. As a result, key material properties were identified in order to calculate it with the necessary accuracy. Size- and moisture-related properties were influential in the wetting zone whereas density-related properties were more dominant in the kneading zones.


Asunto(s)
Composición de Medicamentos , Industria Farmacéutica , Composición de Medicamentos/métodos , Análisis de los Mínimos Cuadrados , Tamaño de la Partícula , Tecnología Farmacéutica/métodos
5.
Pharmaceutics ; 13(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064771

RESUMEN

Recently, the pharmaceutical industry has undergone changes in the production of solid oral dosages from traditional inefficient and expensive batch production to continuous manufacturing. The latest advancements include increased use of continuous twin-screw wet granulation and application of advanced modeling tools such as Population Balance Models (PBMs). However, improved understanding of the physical process within the granulator and improvement of current population balance models are necessary for the continuous production process to be successful in practice. In this study, an existing compartmental one-dimensional PBM of a twin-screw granulation process was improved by altering the original aggregation kernel in the wetting zone as a result of an identifiability analysis. In addition, a strategy was successfully applied to reduce the number of model parameters to be calibrated in both the wetting zone and kneading zones. It was found that the new aggregation kernel in the wetting zone is capable of reproducing the particle size distribution that is experimentally observed at different process conditions as well as different types of formulations, varying in hydrophilicity and API concentration. Finally, it was observed that model parameters could be linked not only to the material properties but also to the liquid to solid ratio, paving the way to create a generic PBM to predict the particle size distribution of a new formulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA