Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article En | MEDLINE | ID: mdl-38612888

Ionic channels are present in eucaryotic plasma and intracellular membranes. They coordinate and control several functions. Potassium channels belong to the most diverse family of ionic channels that includes ATP-dependent potassium (KATP) channels in the potassium rectifier channel subfamily. These channels were initially described in heart muscle and then in other tissues such as pancreatic, skeletal muscle, brain, and vascular and non-vascular smooth muscle tissues. In pancreatic beta cells, KATP channels are primarily responsible for maintaining the membrane potential and for depolarization-mediated insulin release, and their decreased density and activity may be related to insulin resistance. KATP channels' relationship with insulin resistance is beginning to be explored in extra-pancreatic beta tissues like the skeletal muscle, where KATP channels are involved in insulin-dependent glucose recapture and their activation may lead to insulin resistance. In adipose tissues, KATP channels containing Kir6.2 protein subunits could be related to the increase in free fatty acids and insulin resistance; therefore, pathological processes that promote prolonged adipocyte KATP channel inhibition might lead to obesity due to insulin resistance. In the central nervous system, KATP channel activation can regulate peripheric glycemia and lead to brain insulin resistance, an early peripheral alteration that can lead to the development of pathologies such as obesity and Type 2 Diabetes Mellitus (T2DM). In this review, we aim to discuss the characteristics of KATP channels, their relationship with clinical disorders, and their mechanisms and potential associations with peripheral and central insulin resistance.


Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Potassium Channels , Insulin , Insulin, Regular, Human , Pancreatic Hormones , KATP Channels , Obesity , Potassium , Adenosine Triphosphate
2.
Antioxidants (Basel) ; 12(12)2023 Dec 16.
Article En | MEDLINE | ID: mdl-38136245

Stroke represents one of the main causes of death and disability in the world; despite this, pharmacological therapies against stroke remain insufficient. Ischemic stroke is the leading etiology of stroke. Different molecular mechanisms, such as excitotoxicity, oxidative stress, and inflammation, participate in cell death and tissue damage. At a preclinical level, different garlic compounds have been evaluated against these mechanisms. Additionally, there is evidence supporting the participation of garlic compounds in other mechanisms that contribute to brain tissue recovery, such as neuroplasticity. After ischemia, neuroplasticity is activated to recover cognitive and motor function. Some garlic-derived compounds and preparations have shown the ability to promote neuroplasticity under physiological conditions and, more importantly, in cerebral damage models. This work describes damage/repair mechanisms and the importance of garlic as a source of antioxidant and anti-inflammatory agents against damage. Moreover, we examine the less-explored neurotrophic properties of garlic, culminating in proposals and observations based on our review of the available information. The aim of the present study is to propose that garlic compounds and preparations could contribute to the treatment of ischemic stroke through their neurotrophic effects.

3.
J Biochem Mol Toxicol ; 37(12): e23492, 2023 Dec.
Article En | MEDLINE | ID: mdl-37561086

Cisplatin (CP) is a chemotherapeutic drug used to treat solid tumors. However, studies have revealed its nephrotoxic effect. Oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are involved in CP-induced renal damage. Thus, preconditioning (hormetic effect) of ER stress is a strategy to prevent CP-induced renal damage. On the other hand, isoliquiritigenin (IsoLQ) is recognized as a flavonoid with antioxidant properties and an inducer of ER stress. Therefore, we evaluated the ER stress-inducing capacity of IsoLQ and its possible protective effect against CP-induced nephrotoxicity in adult male Wistar rats. The findings reflected that IsoLQ pretreatment might decrease renal damage by reducing plasma creatinine and blood urea nitrogen levels in animals with CP-induced nephrotoxicity. These may be associated with IsoLQ activating ER stress and unfolded protein response (UPR). We found increased messenger RNA levels of the ER stress marker glucose-related protein 78 kDa (GRP78). In addition, we also found that pretreatment with IsoLQ reduced the levels of CCAAT/enhancer-binding protein-homologous protein (CHOP) and X-box-binding protein 1 (XBP1) in the renal cortex, reflecting that IsoLQ can regulate the UPR and activation of the apoptotic pathway. Moreover, this preconditioning with IsoLQ of ER stress had oxidative stress-regulatory effects, as it restored the activity of glutathione peroxidase and glutathione reductase enzymes. Finally, IsoLQ modifies the protein expression of mitofusin 2 (Mfn-2) and voltage-dependent anion channel (VDAC). In conclusion, these data suggest that IsoLQ pretreatment has a nephroprotective effect; it could functionally regulate the ER and mitochondria and reduce CP-induced renal damage by attenuating hormesis-mediated ER stress.


Apoptosis , Cisplatin , Rats , Animals , Male , Cisplatin/toxicity , Rats, Wistar , Kidney , Oxidative Stress , Endoplasmic Reticulum Stress
4.
Mol Neurobiol ; 59(11): 6632-6651, 2022 Nov.
Article En | MEDLINE | ID: mdl-35980566

Quinolinic acid (QUIN) is an agonist of N-methyl-D-aspartate receptor (NMDAr) used to study the underlying mechanism of excitotoxicity in animal models. There is evidence indicating that impairment in autophagy at early times contributes to cellular damage in excitotoxicity; however, the status of autophagy in QUIN model on day 7 remains unexplored. In this study, the ultrastructural analysis of subcellular compartments and the status of autophagy, necroptosis, and apoptosis in the striatum of rats administered with QUIN (120 nmol and 240 nmol) was performed on day 7. QUIN induced circling behavior, neurodegeneration, and cellular damage; also, it promoted swollen mitochondrial crests, spherical-like morphology, and mitochondrial fragmentation; decreased ribosomal density in the rough endoplasmic reticulum; and altered the continuity of myelin sheaths in axons with separation of the compact lamellae. Furthermore, QUIN induced an increase and a decrease in ULK1 and p-70-S6K phosphorylation, respectively, suggesting autophagy activation; however, the increased microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and sequestosome-1/p62 (SQSTM1/p62), the coexistence of p62 and LC3 in the same structures, and the decrease in Beclin 1 and mature cathepsin D also indicates a blockage in autophagy flux. Additionally, QUIN administration increased tumor necrosis factor alpha (TNFα) and receptor-interacting protein kinase 3 (RIPK3) levels and its phosphorylation (p-RIPK3), as well as decreased B-cell lymphoma 2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) levels and c-Jun N-terminal kinase (JNK) phosphorylation, suggesting an activation of necroptosis and apoptosis, respectively. These results suggest that QUIN activates the autophagy, but on day 7, it is blocked and organelle and cellular damage, neurodegeneration, and behavior alterations could be caused by necroptosis and apoptosis activation.


Quinolinic Acid , Tumor Necrosis Factor-alpha , Animals , Apoptosis/physiology , Autophagy/physiology , Beclin-1/metabolism , Cathepsin D/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism , Necroptosis , Quinolinic Acid/toxicity , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Sequestosome-1 Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/metabolism
5.
Nutrients ; 12(9)2020 Sep 22.
Article En | MEDLINE | ID: mdl-32971775

BACKGROUND: Magnesium is a mineral that modulates several physiological processes. However, its relationship with intestinal microbiota has been scarcely studied. Therefore, this study aimed to assess the role of dietary magnesium content to modulate the intestinal microbiota of Wistar male rats. METHODS: Rats were randomly assigned one of three diets: a control diet (C-Mg; 1000 mg/kg), a low magnesium content diet (L-Mg; 60 mg/kg), and a high magnesium content diet (H-Mg; 6000 mg/kg), for two weeks. After treatment, fecal samples were collected. Microbiota composition was assessed by sequencing the V3-V4 hypervariable region. RESULTS: The C-Mg and L-Mg groups had more diversity than H-Mg group. CF231, SMB53, Dorea, Lactobacillus and Turibacter were enriched in the L-Mg group. In contrast, the phyla Proteobacteria, Parabacteroides, Butyricimonas, and Victivallis were overrepresented in the H-Mg group. PICRUSt analysis indicated that fecal microbiota of the L-Mg group were encoded with an increased abundance of metabolic pathways involving carbohydrate metabolism and butanoate metabolism. CONCLUSION: Dietary magnesium supplementation can result in intestinal dysbiosis development in a situation where there is no magnesium deficiency. Conversely, low dietary magnesium consumption is associated with microbiota with a higher capacity to harvest energy from the diet.


Diet , Gastrointestinal Microbiome/drug effects , Magnesium/administration & dosage , Animals , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Load , Bacteroidetes/isolation & purification , Butyric Acid/metabolism , Carbohydrate Metabolism , Dietary Supplements/adverse effects , Dysbiosis/chemically induced , Feces/microbiology , Firmicutes/isolation & purification , Magnesium/adverse effects , Magnesium Deficiency/microbiology , Male , Proteobacteria/isolation & purification , Rats , Rats, Wistar
6.
Antioxidants (Basel) ; 8(9)2019 Sep 11.
Article En | MEDLINE | ID: mdl-31514267

In the present study we investigated the participation of brain-derived neurotropic factor (BDNF) on the activation of the mitogen activated protein kinase (MAPK) protein extracellular signal-regulated kinase-1/2 (ERK1/2) as a mechanism of curcumin (CUR) to provide an antioxidant defense system mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2) in the neurotoxic model induced by quinolinic acid (QUIN). Wistar rats received CUR (400 mg/kg, intragastrically) for 6 days after intrastriatal injection with QUIN (240 nmol). CUR improved the motor deficit and morphological alterations induced by QUIN and restored BDNF, ERK1/2, and Nrf2 levels. CUR treatment avoided the decrease in the protein levels of glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamylcysteine ligase (γ-GCL), and glutathione (GSH) levels. Only, the QUIN-induced decrease in the GR activity was prevented by CUR treatment. Finally, QUIN increased superoxide dismutase 2 (SOD2) and catalase (CAT) levels, and the γGCL and CAT activities; however, this increase was major in the QUIN+CUR group for γ-GCL, CAT, and SOD activities. These data suggest that the therapeutic effect of CUR could involve BDNF action on the activation of ERK1/2 to induce increased levels of protein and enzyme activity of antioxidant proteins regulated by Nrf2 and GSH levels.

7.
Antioxidants (Basel) ; 8(9)2019 Sep 18.
Article En | MEDLINE | ID: mdl-31540440

Stroke is a public health problem due to its high mortality and disability rates; despite these, the pharmacological treatments are limited. Oxidative stress plays an important role in cerebral damage in stroke and the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) confers protection against oxidative stress. Different compounds, such as diallyl trisulfide (DATS), have the ability to activate Nrf2. DATS protects against the damage induced in oxygen-glucose deprivation in neuronal cells; however, in in vivo models of cerebral ischemia, DATS has not been evaluated. Male Wistar rats were subjected to 1 h of ischemia and seven days of reperfusion and the protective effect of DATS was evaluated. DATS administration (IR + DATS) decreased the infarct area and brain damage in the striatum and cortex; improved neurological function; decreased malondialdehyde and metalloproteinase-9 levels; increased Nrf2 activation in the cortex and the expression of superoxide dismutase 1 (SOD1) in the nucleus, SOD2 and glutathione S-transferase (GST) in the striatum and cortex; and increased the activity of catalase (CAT) in the striatum and glutathione peroxidase (GPx) in the cortex. Our results demonstrate the protective effect of DATS in an in vivo model of cerebral ischemia that involves Nrf2 activation.

8.
Neurotoxicology ; 73: 120-131, 2019 07.
Article En | MEDLINE | ID: mdl-30876764

Quinolinic acid (QUIN) is an excitotoxic and pro-oxidant molecule used in the study of neurodegenerative disorders because it reproduces certain biochemical characteristics present in these diseases. The use of antioxidant molecules in the QUIN model reduces cellular damage through the nuclear factor erythroid 2-related to factor 2 (Nrf2) pathway. The Nrf2 transcription factor is considered the master regulator of antioxidant genes expression, and its activation occurs by an increase in the reactive oxygen species (ROS) levels or in the presence of electrophilic compounds. However, Nrf2 activation also occurs in an oxidative stress-independent process caused by the disruption of the Keap1-Nrf2 complex by the direct interaction of Keap1 with certain proteins, such as DPP3 and p62. The aim of this study was to evaluate the effect of QUIN on Nrf2 activation over short periods of time. QUIN administration increased Nrf2 activation at 30 min in the striatum without increasing ROS production or modifying the redox cellular state. Moreover, QUIN increased Keap1 and Nrf2 nuclear levels and increased the protein-protein interaction between Keap1 and DPP3 and Keap1 and p62 30 min after QUIN administration. Finally, we found that Nrf2 activation primarily occurs in striatal neurons. Our results show that QUIN administration in vivo stimulates Nrf2 expression and activation in the absence of oxidative stress primarily in neurons and increases the interaction of p62 and DPP3 with Keap1, which could participate in Nrf2 activation.


Corpus Striatum/drug effects , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Oxidants/toxicity , Oxidative Stress/drug effects , Quinolinic Acid/toxicity , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Male , NF-E2-Related Factor 2/genetics , Neurons/metabolism , Neurons/pathology , Protein Binding , Rats, Wistar , Sequestosome-1 Protein/metabolism , Time Factors , Up-Regulation
9.
Free Radic Biol Med ; 135: 60-67, 2019 05 01.
Article En | MEDLINE | ID: mdl-30818054

Food deprivation protects against ischemia-reperfusion (IR) injury through unknown mechanisms. In an experimental rat model of acute IR injury, we found that preoperative fasting for 3 days protects rats from tubular damage and renal functional decline by increasing antioxidant protection independently of the NF-E2-related factor 2 (Nrf2), and by maintaining mitochondrial morphology and function. In addition, further analysis revealed that fasting protects against tubulointerstitial fibrosis. In summary, our results point out to fasting as a robust nutritional intervention to limit oxidative stress and mitochondrial dysfunction in early acute kidney injury and also to promote long-term protection against fibrosis.


Acute Kidney Injury/diet therapy , Kidney/metabolism , NF-E2-Related Factor 2/genetics , Reperfusion Injury/diet therapy , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Antioxidants/metabolism , Fasting/metabolism , Fibrosis/diet therapy , Fibrosis/metabolism , Fibrosis/pathology , Food Deprivation , Humans , Kidney/injuries , Kidney/pathology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Malondialdehyde/metabolism , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Rats , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
10.
Neuroscience ; 383: 22-32, 2018 07 15.
Article En | MEDLINE | ID: mdl-29729989

Oxidative stress secondary to excitotoxicity is a common factor in the physiopathology of a variety of neurological disorders. In response to oxidative stress, several signaling pathways, such as MAPK, are activated or inactivated. Mitogen-activated protein kinase (MAPK) family activation must be finely regulated in time and intensity, as this pathway may either preserve cell survival or promote cell death. In the present study, the activation of MAPK in the excitotoxic injury induced by quinolinic acid (QUIN) was examined in vivo, at short and long times. We used different doses (30, 60, 120 and 240 nmol) of QUIN injected intrastriatally in the right rat striatum and the effect of this treatment on motor deficits, cellular damage, MAPK activation and BDNF/TrkB axis, were evaluated at 2 h and 7 days post-lesion. Higher doses of QUIN (120 and 240 nmol) induced rat motor deficits and caused morphological changes in neurons around the lesion core. QUIN decreased the activation of ERK1/2 in a dose-dependent manner at 7 days post-injection, and induced a sustained increase of c-Jun NH2-terminal kinase (JNK) activation from 2 h to 7 days post-injury. JNK activation was dependent on the QUIN-induced NMDAr activation (only 120 nmol). No significant difference in p38 activation with QUIN was observed. QUIN (120 and 240 nmol) decreased BDNF/TrkB levels at 7 days post-injury. JNK inhibition (by an intracerebroventricular injection of SP600125) prevented the QUIN-induced reduction in BDNF and TrkB at 7 day post-injury, suggesting a role for the QUIN-induced JNK activation on the observed decrease in BDNF levels.


Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , MAP Kinase Signaling System/physiology , Quinolinic Acid/toxicity , Receptor, trkB/metabolism , Animals , Corpus Striatum/drug effects , Enzyme Activation/drug effects , MAP Kinase Signaling System/drug effects , Male , Oxidative Stress/physiology , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/physiology
12.
Food Chem Toxicol ; 107(Pt A): 373-385, 2017 Sep.
Article En | MEDLINE | ID: mdl-28698153

Cisplatin is widely used as chemotherapeutic agent for treatment of diverse types of cancer, however, acute kidney injury (AKI) is an important side effect of this treatment. Diverse mechanisms have been involved in cisplatin-induced AKI, such as oxidative stress, apoptosis and mitochondrial damage. On the other hand, curcumin is a polyphenol extracted from the rhizome of Curcuma longa L. Previous studies have shown that curcumin protects against the cisplatin-induced AKI; however, it is unknown whether curcumin can reduce alterations in mitochondrial bioenergetics and dynamic in this model. It was found that curcumin prevents cisplatin-induced: (a) AKI and (b) alterations in the following mitochondrial parameters: bioenergetics, ultrastructure, hydrogen peroxide production and dynamic. In fact, curcumin prevented the increase of mitochondrial fission 1 protein (FIS1), the decrease of optic atrophy 1 protein (OPA1) and the decrease of NAD+-dependent deacetylase sirtuin-3 (SIRT3), a mitochondrial dynamic regulator as well as the increase in the mitophagy associated proteins parkin and phosphatase and tensin homologue (PTEN)-induced putative kinase protein 1 (PINK1). In conclusion, the protective effect of curcumin in cisplatin-induced AKI was associated with the prevention of the alterations in mitochondrial bioenergetics, ultrastructure, redox balance, dynamic, and SIRT3 levels.


Acute Kidney Injury/drug therapy , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Curcumin/administration & dosage , Mitochondria/drug effects , Plant Extracts/administration & dosage , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Animals , Apoptosis/drug effects , Curcuma/chemistry , Energy Metabolism/drug effects , Humans , Hydrogen Peroxide/metabolism , Kidney/drug effects , Kidney/metabolism , Male , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy/drug effects , Oxidative Stress/drug effects , Proteins/genetics , Proteins/metabolism , Rats , Rats, Wistar , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
13.
Neurochem Res ; 42(11): 3041-3051, 2017 Nov.
Article En | MEDLINE | ID: mdl-28646259

Oxidative stress plays an important role in neurodegenerative diseases and aging. The cellular defense mechanisms to deal with oxidative damage involve the activation of transcription factor related to NF-E2 (Nrf2), which enhances the transcription of antioxidant and phase II enzyme genes. S-allylcysteine (SAC) is an antioxidant with neuroprotective properties, and the main organosulfur compound in aged garlic extract. The ability of SAC to activate the Nrf2 factor has been previously reported in hepatic cells; however this effect has not been studied in normal brain. In order to determine if the chronic administration of SAC is able to activate Nrf2 factor and enhance antioxidant defense in the brain, male Wistar rats were administered with SAC (25, 50, 100 and 200 mg/kg-body weight each 24 h, i.g.) for 90 days. The activation of Nrf2, the levels of p65 and 8-hydroxy-2-deoxyguanosine (8-OHdG) as well as the activities of the enzymes glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) were evaluated in the hippocampus, striatum and frontal cortex. Results showed that SAC activated Nrf2 factor in the hippocampus (25-200 mg/kg) and striatum (100 mg/kg) and significantly decreased p65 levels in the frontal cortex (25-200 mg/kg). On the other hand, SAC increased GPx, GR, CAT and SOD activities mainly in the hippocampus and striatum, but it did not change GST activity. Finally, no changes were observed in 8-OHdG levels mediated by SAC in any brain region, but the hippocampus showed a major level of 8-OHdG compared with the striatum and frontal cortex. All these results suggest that in the hippocampus, the observed increase in the activity of antioxidant enzymes could be associated with the ability of SAC to activate Nrf2 factor; however, a different mechanism could be involved in the striatum and frontal cortex, since no changes were found in Nrf2 activation and p65 levels.


Antioxidants/metabolism , Corpus Striatum/metabolism , Cysteine/analogs & derivatives , Frontal Lobe/metabolism , Hippocampus/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Corpus Striatum/drug effects , Cysteine/administration & dosage , Enzyme Activation/drug effects , Enzyme Activation/physiology , Frontal Lobe/drug effects , Hippocampus/drug effects , Male , Rats , Rats, Wistar
14.
Neuroscience ; 350: 65-74, 2017 05 14.
Article En | MEDLINE | ID: mdl-28323011

Apocynin (APO) is a well-known NADPH oxidase (NOX) inhibitor. However, several studies have reported its ability to increase glutathione (GSH) levels. Due to GSH is a major non-enzymatic antioxidant in brain, the aim of this study was to evaluate, in the striatum of control and quinolinic acid (QUIN) injected rats, the effect of APO administration on: (1) GSH levels, (2) activity of some enzymes involved in the GSH metabolism, and (3) nuclear factor erythroid-2-related factor 2 (Nrf2) mRNA levels. Animals received QUIN 240nmol in right striatum and APO (5mg/kg, i.p.), 30min before and 60min after intrastriatal injection. APO treatment prevented the QUIN-induced histological damage to the striatum. In control rats, APO treatment increased GSH and Nrf2 mRNA levels and the activities of gamma-glutamylcysteine ligase (γ-GCL), glutathione-S-transferase (GST) and glutathione peroxidase (GPx). On the other hand, APO treatment prevented the QUIN-induced decrease in GSH and Nrf2 levels, and in γ-GCL and GPx activities. These data indicate that APO is able to increase GSH levels and the activity of proteins involved in its metabolism, which could be associated with its ability to increase the Nrf2 mRNA levels.


Acetophenones/pharmacology , Antioxidants/pharmacology , Corpus Striatum/drug effects , Glutathione/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Corpus Striatum/metabolism , Glutathione Peroxidase/metabolism , Male , Quinolinic Acid/pharmacology , Rats, Wistar
15.
Eur J Pharmacol ; 800: 57-62, 2017 Apr 05.
Article En | MEDLINE | ID: mdl-28216053

The antioxidant system results essential to control and prevent lipid peroxidation due to stress damage in type 2 diabetes. An example is aldehyde dehydrogenase (ALDH), an enzyme that is involved in the detoxification of aldehydes formed during lipid peroxidation. This study was conducted to evaluate ALDH activity and to determine their association with hypoglycemic treatment in type 2 diabetes patients. The study population consisted of 422 Mexican subjects: a control group and type 2 diabetes patients. Type 2 diabetes patients were re-classified as those with or without hypoglycemic treatment and those with or without glycemic control (according to glycated hemoglobin (HbA1c)). Clinical parameters, antioxidant enzyme activities (ALDH, superoxide dismutase (SOD), catalase and glutathione peroxidase) and oxidative markers (reactive oxygen species and thiobarbituric acid reactive substances (TBARS)) were evaluated. The activity of antioxidant enzymes and oxidative stress markers were higher in type 2 diabetes patients with hypoglycemic treatment and without glycemic control than control group. The activity of ALDH and SOD remained high in type 2 diabetes patients with moderate glycemic control while only ALDH's remained high in type 2 diabetes patients with tight glycemic control. Increased ALDH and SOD activities were associated with hypoglycemic therapy. TBARS levels were associated with glycemic control. The persistence of high ALDH and SOD activities in type 2 diabetes patients with glycemic control may be to avoid a significant damage due to the increase in reactive oxygen species and TBARS. It is possible that this new oxidative status prevented the development the classical complications of diabetes.


Aldehyde Dehydrogenase/metabolism , Antioxidants/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Adult , Aged , Biomarkers/metabolism , Diabetes Mellitus, Type 2/enzymology , Female , Humans , Hypoglycemic Agents/therapeutic use , Male , Middle Aged , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
16.
Food Funct ; 7(1): 279-93, 2016 Jan.
Article En | MEDLINE | ID: mdl-26467482

Curcumin is a polyphenol and cisplatin is an antineoplastic agent that induces nephrotoxicity associated with oxidative stress, apoptosis, fibrosis and decrease in renal tight junction (TJ) proteins. The potential effect of curcumin against alterations in TJ structure and function has not been evaluated in cisplatin-induced nephrotoxicity. The present study explored whether curcumin is able to prevent the cisplatin-induced fibrosis and decreased expression of the TJ and adherens junction (AJ) proteins occludin, claudin-2 and E-cadherin in cisplatin-induced nephrotoxicity. Curcumin (200 mg kg(-1)) was administered in three doses, and rats were sacrificed 72 h after cisplatin administration. Curcumin was able to scavenge, in a concentration-dependent way, superoxide anion, hydroxyl radical, peroxyl radical, singlet oxygen, peroxynitrite anion, hypochlorous acid and hydrogen peroxide. Cisplatin-induced renal damage was associated with alterations in plasma creatinine, expression of neutrophil gelatinase-associated lipocalin and of kidney injury molecule-1, histological damage, increase in apoptosis, fibrosis (evaluated by transforming growth factor ß1, collagen I and IV and α-smooth muscle actin expressions), increase in oxidative/nitrosative stress (evaluated by Hsp70/72 expression, protein tyrosine nitration, superoxide anion production in isolated glomeruli and proximal tubules, and protein levels of NADPH oxidase subunits p47(phox) and gp91(phox), protein kinase C ß2, and Nrf2) as well as by decreased expression of occludin, claudin-2, ß-catenin and E-cadherin. Curcumin treatment prevented all the above-described alterations. The protective effect of curcumin against cisplatin-induced fibrosis and decreased proteins of the TJ and AJ was associated with the prevention of glomerular and proximal tubular superoxide anion production induced by NADPH oxidase activity.


Adherens Junctions/drug effects , Antioxidants/pharmacology , Cisplatin/toxicity , Curcumin/pharmacology , Oxidative Stress/drug effects , Tight Junctions/drug effects , Animals , Antioxidants/chemistry , Biomarkers , Curcumin/chemistry , Fibrosis/drug therapy , Free Radical Scavengers , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Male , NADPH Oxidases/chemistry , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Protein Kinase C beta/genetics , Protein Kinase C beta/metabolism , Protein Subunits , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxides
17.
Int J Mol Sci ; 15(11): 20290-305, 2014 Nov 06.
Article En | MEDLINE | ID: mdl-25383674

The redox status associated with nuclear factor erythroid 2-related factor-2 (Nrf2) was evaluated in prediabetic and diabetic subjects. Total antioxidant status (TAS) in plasma and erythrocytes, glutathione (GSH) and malondialdehyde (MDA) content and activity of antioxidant enzymes were measured as redox status markers in 259 controls, 111 prediabetics and 186 diabetic type 2 subjects. Nrf2 was measured in nuclear extract fractions from peripheral blood mononuclear cells (PBMC). Nrf2 levels were lower in prediabetic and diabetic patients. TAS, GSH and activity of glutamate cysteine ligase were lower in diabetic subjects. An increase of MDA and superoxide dismutase activity was found in diabetic subjects. These results suggest that low levels of Nrf2 are involved in the development of oxidative stress and redox status disbalance in diabetic patients.


Diabetes Mellitus, Type 2/metabolism , NF-E2-Related Factor 2/metabolism , Prediabetic State/metabolism , Adult , Age Factors , Antioxidant Response Elements/genetics , Antioxidants/metabolism , Biomarkers/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/enzymology , Female , Glycated Hemoglobin/metabolism , Hospitalization , Humans , Male , Middle Aged , Oxidation-Reduction , Prediabetic State/blood , Prediabetic State/enzymology , Protein Binding
18.
Toxicol Mech Methods ; 24(7): 520-8, 2014 Oct.
Article En | MEDLINE | ID: mdl-25052570

UNLABELLED: Cisplatin (CP) is an antineoplastic agent that induces nephrotoxicity and oxidative stress. It is unknown whether renal tight junction (TJ) proteins expression and localization are modified in CP-induced nephrotoxicity. OBJECTIVE: To study if the expression of the TJ proteins occludin, claudin-2, claudin-5 and zonula occludens-1 (ZO-1) is modified in rats with CP-induced nephrotoxicity. MATERIALS AND METHODS: Male Wistar rats (n = 5/group) were injected with saline solution (V group), and the other group (CP group) was injected with a single dose of saline solution and CP (7.5 mg/kg i.p.). Rats were sacrificed 72 h after CP injection and blood, and 24-h urine samples were collected. Several plasma and urinary injury biomarkers as well as renal histopathology lesions, oxidative and nitrosative stress markers were evaluated, and protein levels of ocludin, claudin-2, claudin-5, ZO-1 were measured by Western blot. Statistically significant changes noted with different p < 0.05 versus V. RESULTS: Nephrotoxicity was evident by histological alterations, glycosuria, decrease in creatinine clearance, increase in fractional excretion of sodium, serum creatinine and kidney injury molecule-1. These changes were associated with oxidative/nitrosative stress (increased renal abundance of 3-nitrotyrosine and protein kinase Cß2 and decreased renal expression of nuclear factor-erythroid-2-related factor 2) and decreased activity of antioxidant enzymes. Finally, it was found that CP-induced renal damage was associated with decreased renal expression of occludin and claudin-2. DISCUSSION AND CONCLUSION: CP altered the TJ proteins expression and localization in the proximal tubule that was associated with oxidative/nitrosative stress.


Cisplatin/toxicity , Kidney/drug effects , Proteins/metabolism , Tight Junctions/drug effects , Animals , Biomarkers/blood , Biomarkers/urine , Blotting, Western , Kidney/metabolism , Male , Rats , Rats, Wistar , Tight Junctions/metabolism
19.
J Pharm Pharmacol ; 66(9): 1271-81, 2014 Sep.
Article En | MEDLINE | ID: mdl-24779924

OBJECTIVES: Cisplatin (CP) is an antineoplastic agent that induces nephrotoxicity and oxidative stress. S-allylcysteine (SAC) is a garlic-derived antioxidant. This study aims to explore whether SAC protects against CP-induced nephrotoxicity in rats. METHODS: In the first stage, the SAC protective dose was determined by measuring renal damage and the oxidative stress markers malondialdehyde, oxidized proteins and glutathione in rats injected with CP. In the second stage, the effect of a single dose of SAC on the expression of nuclear factor-erythroid 2-related factor-2 (Nrf2), protein kinase C beta 2 (PKCß2) and nicotinamide adenine dinucleotide phosphate oxidase subunits (p47(phox) and gp91(phox) ) was studied. In addition, the effect of SAC on oxidative stress markers and on the activity of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in isolated proximal and distal tubules were evaluated. KEY FINDINGS: SAC (25 mg/kg) prevented the CP-induced renal damage and attenuated CP-induced decrease in Nrf2 levels and increase in PKCß2, p47(phox) and gp91(phox) expression in renal cortex and oxidative stress and decrease in the activity of CAT, GPx and GR in proximal and distal tubules. CONCLUSIONS: These data suggest that SAC provides renoprotection by attenuating CP-induced oxidative stress and decrease in the activity of CAT, GPx and GR.


Antioxidants/therapeutic use , Cisplatin/adverse effects , Cysteine/analogs & derivatives , Garlic/chemistry , Kidney Diseases/prevention & control , Kidney/drug effects , Oxidative Stress/drug effects , Animals , Antineoplastic Agents/adverse effects , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/metabolism , Cisplatin/therapeutic use , Cysteine/pharmacology , Cysteine/therapeutic use , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Kidney/metabolism , Kidney Diseases/metabolism , Male , Malondialdehyde/metabolism , Membrane Glycoproteins/metabolism , NADPH Oxidase 2 , NADPH Oxidases/metabolism , NF-E2-Related Factor 2/metabolism , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Protein Kinase C beta/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism
20.
Ren Fail ; 35(1): 132-7, 2013.
Article En | MEDLINE | ID: mdl-23113705

The exposure to hexavalent chromium is often known to cause acute renal failure. It has been found that nonenzymatic antioxidants and the induction of heme oxygenase 1 have protective effects against nephrotoxicity induced by potassium dichromate in vivo. In this work, the effect of stannous chloride, an inducer of heme oxygenase 1, on potassium dichromate-induced toxicity in proximal tubular epithelial cells was studied. Hexavalent chromium levels, peroxynitrite content, reduced thiol content, heme oxygenase activity, reactive oxygen species production, and stannous chloride scavenging capacity were measured. It was found that stannous chloride protects proximal tubular epithelial cells from potassium dichromate-induced cell death. The decrease in extracellular and intracellular hexavalent chromium concentration, the induction of heme oxygenase 1, and the ability to scavenge reactive oxygen species and peroxynitrite are involved in the mechanism by which stannous chloride protects proximal tubular epithelial cells from potassium dichromate-induced toxicity.


Acute Kidney Injury/prevention & control , Kidney Tubules/drug effects , Oxidative Stress , Tin Compounds/pharmacology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Cell Count , Cells, Cultured , Disease Models, Animal , Heme Oxygenase (Decyclizing)/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology , Potassium Dichromate/toxicity , Reactive Oxygen Species/metabolism , Swine
...