Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 7(1): 197, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326316

RESUMEN

Tissue transglutaminase (TG2), a multifunctional protein of the transglutaminase family, has putative transamidation-independent functions in aging-associated vascular stiffening and dysfunction. Developing preclinical models will be critical to fully understand the physiologic relevance of TG2's transamidation-independent activity and to identify the specific function of TG2 for therapeutic targeting. Therefore, in this study, we harnessed CRISPR-Cas9 gene editing technology to introduce a mutation at cysteine 277 in the active site of the mouse Tgm2 gene. Heterozygous and homozygous Tgm2-C277S mice were phenotypically normal and were born at the expected Mendelian frequency. TG2 protein was ubiquitously expressed in the Tgm2-C277S mice at levels similar to those of wild-type (WT) mice. In the Tgm2-C277S mice, TG2 transglutaminase function was successfully obliterated, but the transamidation-independent functions ascribed to GTP, fibronectin, and integrin binding were preserved. In vitro, a remodeling stimulus led to the significant loss of vascular compliance in WT mice, but not in the Tgm2-C277S or TG2-/- mice. Vascular stiffness increased with age in WT mice, as measured by pulse-wave velocity and tensile testing. Tgm2-C277S mice were protected from age-associated vascular stiffening, and TG2 knockout yielded further protection. Together, these studies show that TG2 contributes significantly to overall vascular modulus and vasoreactivity independent of its transamidation function, but that transamidation activity is a significant cause of vascular matrix stiffening during aging. Finally, the Tgm2-C277S mice can be used for in vivo studies to explore the transamidation-independent roles of TG2 in physiology and pathophysiology.

2.
iScience ; 24(4): 102246, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33796838

RESUMEN

Heterozygous gain-of-function (GOF) mutations of hypoxia-inducible factor 2α (HIF2A), a key hypoxia-sensing regulator, are associated with erythrocytosis, thrombosis, and vascular complications that account for morbidity and mortality of patients. We demonstrated that the vascular pathology of HIF2A GOF mutations is independent of erythrocytosis. We generated HIF2A GOF-induced pluripotent stem cells (iPSCs) and differentiated them into endothelial cells (ECs) and smooth muscle cells (SMCs). Unexpectedly, HIF2A-SMCs, but not HIF2A-ECs, were phenotypically aberrant, more contractile, stiffer, and overexpressed endothelin 1 (EDN1), myosin heavy chain, elastin, and fibrillin. EDN1 inhibition and knockdown of EDN1-receptors both reduced HIF2-SMC stiffness. Hif2A GOF heterozygous mice displayed pulmonary hypertension, had SMCs with more disorganized stress fibers and higher stiffness in their pulmonary arterial smooth muscle cells, and had more deformable pulmonary arteries compared with wild-type mice. Our findings suggest that targeting these vascular aberrations could benefit patients with HIF2A GOF and conditions of augmented hypoxia signaling.

3.
Am J Physiol Heart Circ Physiol ; 317(1): H49-H59, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31002285

RESUMEN

Vascular stiffening and its sequelae are major causes of morbidity and mortality in the elderly. The increasingly accepted concept of "smooth muscle cell (SMC) stiffness syndrome" along with matrix deposition has emerged in vascular biology to account for the mechanical phenotype of arterial aging, but the molecular targets remain elusive. In this study, using an unbiased proteomic analysis, we identified lysyl oxidase-like 2 (LOXL2) as a critical SMC mediator for age-associated vascular stiffening. We tested the hypothesis that loss of LOXL2 function is protective in aging-associated vascular stiffening. We determined that exogenous and endogenous nitric oxide markedly decreased LOXL2 abundance and activity in the extracellular matrix of isolated SMCs and LOXL2 endothelial cells suppress LOXL2 abundance in the aorta. In a longitudinal study, LOXL2+/- mice were protected from age-associated increase in pulse-wave velocity, an index of vascular stiffening, as occurred in littermate wild-type mice. Using isolated aortic segments, we found that LOXL2 mediates vascular stiffening in aging by promoting SMC stiffness, augmented SMC contractility, and vascular matrix deposition. Together, these studies establish LOXL2 as a nodal point for a new therapeutic approach to treat age-associated vascular stiffening. NEW & NOTEWORTHY Increased central vascular stiffness augments risk of major adverse cardiovascular events. Despite significant advances in understanding the genetic and molecular underpinnings of vascular stiffening, targeted therapy has remained elusive. Here, we show that lysyl oxidase-like 2 (LOXL2) drives vascular stiffening during aging by promoting matrix remodeling and vascular smooth muscle cell stiffening. Reduced LOXL2 expression protects mice from age-associated vascular stiffening and delays the onset of isolated systolic hypertension, a major consequence of stiffening.


Asunto(s)
Aminoácido Oxidorreductasas/deficiencia , Enfermedades de la Aorta/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Remodelación Vascular , Rigidez Vascular , Factores de Edad , Aminoácido Oxidorreductasas/genética , Animales , Aorta Torácica/enzimología , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/fisiopatología , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Ratones Noqueados , Músculo Liso Vascular/fisiopatología , Óxido Nítrico/metabolismo , Comunicación Paracrina , Transducción de Señal , Vasoconstricción
4.
Front Physiol ; 9: 1673, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542293

RESUMEN

Sensory receptors that detect and respond to light, taste, and smell primarily belong to the G-protein-coupled receptor (GPCR) superfamily. In addition to their established roles in the nose, tongue, and eyes, these sensory GPCRs have been found in many 'non-sensory' organs where they respond to different physicochemical stimuli, initiating signaling cascades in these extrasensory systems. For example, taste receptors in the airway, and photoreceptors in vascular smooth muscle cells, both cause smooth muscle relaxation when activated. In addition, olfactory receptors are present within the vascular system, where they play roles in angiogenesis as well as in modulating vascular tone. By better understanding the physiological and pathophysiological roles of sensory receptors in non-sensory organs, novel therapeutic agents can be developed targeting these receptors, ultimately leading to treatments for pathological conditions and potential cures for various disease states.

5.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L93-L106, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28882814

RESUMEN

We recently demonstrated that blue light induces vasorelaxation in the systemic mouse circulation, a phenomenon mediated by the nonvisual G protein-coupled receptor melanopsin (Opsin 4; Opn4). Here we tested the hypothesis that nonvisual opsins mediate photorelaxation in the pulmonary circulation. We discovered Opsin 3 (Opn3), Opn4, and G protein-coupled receptor kinase 2 (GRK2) in rat pulmonary arteries (PAs) and in pulmonary arterial smooth muscle cells (PASMCs), where the opsins interact directly with GRK2, as demonstrated with a proximity ligation assay. Light elicited an intensity-dependent relaxation of PAs preconstricted with phenylephrine (PE), with a maximum response between 400 and 460 nm (blue light). Wavelength-specific photorelaxation was attenuated in PAs from Opn4-/- mice and further reduced following shRNA-mediated knockdown of Opn3. Inhibition of GRK2 amplified the response and prevented physiological desensitization to repeated light exposure. Blue light also prevented PE-induced constriction in isolated PAs, decreased basal tone, ablated PE-induced single-cell contraction of PASMCs, and reversed PE-induced depolarization in PASMCs when GRK2 was inhibited. The photorelaxation response was modulated by soluble guanylyl cyclase but not by protein kinase G or nitric oxide. Most importantly, blue light induced significant vasorelaxation of PAs from rats with chronic pulmonary hypertension and effectively lowered pulmonary arterial pressure in isolated intact perfused rat lungs subjected to acute hypoxia. These findings show that functional Opn3 and Opn4 in PAs represent an endogenous "optogenetic system" that mediates photorelaxation in the pulmonary vasculature. Phototherapy in conjunction with GRK2 inhibition could therefore provide an alternative treatment strategy for pulmonary vasoconstrictive disorders.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Hipertensión Pulmonar/radioterapia , Fototerapia , Arteria Pulmonar/efectos de la radiación , Opsinas de Bastones/fisiología , Vasodilatación/efectos de la radiación , Animales , Células Cultivadas , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de la radiación , Óxido Nítrico/metabolismo , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Guanilil Ciclasa Soluble/genética , Guanilil Ciclasa Soluble/metabolismo , Vasodilatación/fisiología
6.
FASEB J ; 29(8): 3302-14, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25900808

RESUMEN

Despite current advances in engineering blood vessels over 1 mm in diameter and the existing wealth of knowledge regarding capillary bed formation, studies for the development of microvasculature, the connecting bridge between them, have been extremely limited so far. Here, we evaluate the use of 3-dimensional (3D) microfibers fabricated by hydrogel electrospinning as templates for microvascular structure formation. We hypothesize that 3D microfibers improve extracellular matrix (ECM) deposition from vascular cells, enabling the formation of freestanding luminal multicellular microvasculature. Compared to 2-dimensional cultures, we demonstrate with confocal microscopy and RT-PCR that fibrin microfibers induce an increased ECM protein deposition by vascular cells, specifically endothelial colony-forming cells, pericytes, and vascular smooth muscle cells. These ECM proteins comprise different layers of the vascular wall including collagen types I, III, and IV, as well as elastin, fibronectin, and laminin. We further demonstrate the achievement of multicellular microvascular structures with an organized endothelium and a robust multicellular perivascular tunica media. This, along with the increased ECM deposition, allowed for the creation of self-supporting multilayered microvasculature with a distinct circular lumen following fibrin microfiber core removal. This approach presents an advancement toward the development of human microvasculature for basic and translational studies.


Asunto(s)
Microfibrillas/metabolismo , Microvasos/fisiología , Células Cultivadas , Colágeno/metabolismo , Elastina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Fibrina/metabolismo , Fibronectinas/metabolismo , Humanos , Laminina , Microvasos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología
7.
Biomaterials ; 35(10): 3243-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24439410

RESUMEN

Hydrogels have been widely used for 3-dimensional (3D) cell culture and tissue regeneration due to their tunable biochemical and physicochemical properties as well as their high water content, which resembles the aqueous microenvironment of the natural extracellular matrix. While many properties of natural hydrogel matrices are modifiable, their intrinsic isotropic structure limits the control over cellular organization, which is critical to restore tissue function. Here we report a generic approach to incorporate alignment topography inside the hydrogel matrix using a combination of electrical and mechanical stretching. Hydrogel fibres with uniaxial alignment were prepared from aqueous solutions of natural polymers such as alginate, fibrin, gelatin, and hyaluronic acid under ambient conditions. The unique internal alignment feature drastically enhances the mechanical properties of the hydrogel microfibres. Furthermore, the facile, organic solvent-free processing conditions are amenable to the incorporation of live cells within the hydrogel fibre or on the fibre surface; both approaches effectively induce cellular alignment. This work demonstrates a versatile and scalable strategy to create aligned hydrogel microfibres from various natural polymers.


Asunto(s)
Hidrogeles/química , Polímeros/química , Materiales Biocompatibles , Microambiente Celular , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Dispersión del Ángulo Pequeño
8.
PLoS One ; 8(11): e81061, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278378

RESUMEN

In microvascular vessels, endothelial cells are aligned longitudinally whereas several components of the extracellular matrix (ECM) are organized circumferentially. While current three-dimensional (3D) in vitro models for microvasculature have allowed the study of ECM-regulated tubulogenesis, they have limited control over topographical cues presented by the ECM and impart a barrier for the high-resolution and dynamic study of multicellular and extracellular organization. Here we exploit a 3D fibrin microfiber scaffold to develop a novel in vitro model of the microvasculature that recapitulates endothelial alignment and ECM deposition in a setting that also allows the sequential co-culture of mural cells. We show that the microfibers' nanotopography induces longitudinal adhesion and alignment of endothelial colony-forming cells (ECFCs), and that these deposit circumferentially organized ECM. We found that ECM wrapping on the microfibers is independent of ECFCs' actin and microtubule organization, but it is dependent on the curvature of the microfiber. Microfibers with smaller diameters (100-400 µm) guided circumferential ECM deposition, whereas microfibers with larger diameters (450 µm) failed to support wrapping ECM. Finally, we demonstrate that vascular smooth muscle cells attached on ECFC-seeded microfibers, depositing collagen I and elastin. Collectively, we establish a novel in vitro model for the sequential control and study of microvasculature development and reveal the unprecedented role of the endothelium in organized ECM deposition regulated by the microfiber curvature.


Asunto(s)
Matriz Extracelular/metabolismo , Técnicas In Vitro , Microvasos/fisiología , Adhesión Celular , Técnicas de Cultivo de Célula , Células Endoteliales/metabolismo , Fibrina , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Madre/metabolismo , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...