Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34726597

RESUMEN

Ageing is associated with increased vulnerability to environmental cold exposure. Previously, we identified the role of the cold-sensitive transient receptor potential (TRP) A1, M8 receptors as vascular cold sensors in mouse skin. We hypothesised that this dynamic cold-sensor system may become dysfunctional in ageing. We show that behavioural and vascular responses to skin local environmental cooling are impaired with even moderate ageing, with reduced TRPM8 gene/protein expression especially. Pharmacological blockade of the residual TRPA1/TRPM8 component substantially diminished the response in aged, compared with young mice. This implies the reliance of the already reduced cold-induced vascular response in ageing mice on remaining TRP receptor activity. Moreover, sympathetic-induced vasoconstriction was reduced with downregulation of the α2c adrenoceptor expression in ageing. The cold-induced vascular response is important for sensing cold and retaining body heat and health. These findings reveal that cold sensors, essential for this neurovascular pathway, decline as ageing onsets.


Asunto(s)
Envejecimiento/fisiología , Frío , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Circulación Sanguínea/fisiología , Femenino , Ratones , Nocicepción/fisiología , Transducción de Señal , Piel/irrigación sanguínea , Canal Catiónico TRPA1/agonistas
2.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203675

RESUMEN

Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has any anti-inflammatory and analgesic properties via TRPC4/5 in the carrageenan model of inflammation. We found that EA treatment in CD1 mice inhibited thermal hyperalgesia and mechanical allodynia in a dose-dependent manner. Furthermore, EA significantly reduced the volume of carrageenan-induced paw oedema and the mass of the treated paws. Additionally, in dorsal root ganglion (DRG) neurons cultured from WT 129S1/SvIm mice, EA induced a dose-dependent cobalt uptake that was surprisingly preserved in cultured DRG neurons from 129S1/SvIm TRPC5 KO mice. Likewise, EA-induced anti-inflammatory and analgesic effects were preserved in the carrageenan model in animals lacking TRPC5 expression or in mice treated with TRPC4/5 antagonist ML204.This study demonstrates that while EA activates a sub-population of DRG neurons, it induces a novel TRPC4/5-independent analgesic and anti-inflammatory effect in vivo. Future studies are needed to elucidate the molecular and cellular mechanisms underlying EA's anti-inflammatory and analgesic effects.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Sesquiterpenos de Guayano/farmacología , Canales Catiónicos TRPC/metabolismo , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Conducta Animal/efectos de los fármacos , Carragenina , Células Cultivadas , Cobalto/metabolismo , Modelos Animales de Enfermedad , Edema/patología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/tratamiento farmacológico , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Ratones Noqueados , Dolor/complicaciones , Dolor/tratamiento farmacológico , Dolor/patología , Fenotipo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Sesquiterpenos de Guayano/uso terapéutico
4.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35056099

RESUMEN

The transient receptor potential (TRP) channels, TRPA1 and TRPM8, are thermo-receptors that detect cold and cool temperatures and play pivotal roles in mediating the cold-induced vascular response. In this study, we investigated the role of TRPA1 and TRPM8 in the thermoregulatory behavioural responses to environmental cold exposure by measuring core body temperature and locomotor activity using a telemetry device that was surgically implanted in mice. The core body temperature of mice that were cooled at 4 °C over 3 h was increased and this was accompanied by an increase in UCP-1 and TRPM8 level as detected by Western blot. We then established an effective route, by which the TRP antagonists could be administered orally with palatable food. This avoids the physical restraint of mice, which is crucial as that could influence the behavioural results. Using selective pharmacological antagonists A967079 and AMTB for TRPA1 and TRPM8 receptors, respectively, we show that TRPM8, but not TRPA1, plays a direct role in thermoregulation response to whole body cold exposure in the mouse. Additionally, we provide evidence of increased TRPM8 levels after cold exposure which could be a protective response to increase core body temperature to counter cold.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...