Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Clin Invest ; 49(2): e13053, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30447089

RESUMEN

BACKGROUND: Lipoprotein apheresis effectively lowers lipoprotein(a) [Lp(a)] and low-density lipoprotein (LDL) by approximately 60%-70%. The rebound of LDL and Lp(a) particle concentrations following lipoprotein apheresis allows the determination of fractional catabolic rate (FCR) and hence production rate (PR) during non-steady state conditions. We aimed to investigate the kinetics of Lp(a) and LDL apolipoprotein B-100 (apoB) particles in patients with elevated Lp(a) and coronary artery disease undergoing regular apheresis. PATIENTS AND METHODS: A cross-sectional study was carried out in 13 patients with elevated Lp(a) concentration (>500 mg/L) and coronary artery disease. Lp(a) and LDL-apoB metabolic parameters, including FCR and PR were derived by the fit of a compartment model to the Lp(a) and LDL-apoB concentration data following lipoprotein apheresis. RESULTS: The FCR of Lp(a) was significantly lower than that of LDL-apoB (0.39 [0.31, 0.49] vs 0.57 [0.46, 0.71] pools/day, P = 0.03) with no significant differences in the corresponding PR (14.80 [11.34, 19.32] vs 15.73 [11.93, 20.75] mg/kg/day, P = 0.80). No significant associations were observed between the FCR and PR of Lp(a) and LDL-apoB. CONCLUSIONS: In patients with elevated Lp(a), the fractional catabolism of Lp(a) is slower than that of LDL-apoB particles, implying that different metabolic pathways are involved in the catabolism of these lipoproteins. These findings have implications for new therapies for lowering apolipoprotein(a) and apoB to prevent atherosclerotic cardiovascular disease.


Asunto(s)
Apolipoproteínas B/metabolismo , Eliminación de Componentes Sanguíneos , Enfermedad de la Arteria Coronaria/terapia , Lipoproteína(a)/metabolismo , Lipoproteínas LDL/metabolismo , Adolescente , Adulto , Anciano , Anticolesterolemiantes/uso terapéutico , Aspirina/uso terapéutico , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/complicaciones , Estudios Transversales , Ezetimiba/uso terapéutico , Femenino , Aceites de Pescado/uso terapéutico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipercolesterolemia/sangre , Hipercolesterolemia/complicaciones , Masculino , Persona de Mediana Edad , Inhibidores de Agregación Plaquetaria/uso terapéutico , Adulto Joven
2.
Am J Cardiovasc Drugs ; 4(4): 227-46, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15285698

RESUMEN

Visceral obesity is frequently associated with high plasma triglycerides and low plasma high density lipoprotein-cholesterol (HDL-C), and with high plasma concentrations of apolipoprotein B (apoB)-containing lipoproteins. Atherogenic dyslipidemia in these patients may be caused by a combination of overproduction of very low density lipoprotein (VLDL) apoB-100, decreased catabolism of apoB-containing particles, and increased catabolism of HDL-apoA-I particles. These abnormalities may be consequent on a global metabolic effect of insulin resistance. Weight reduction, increased physical activity, and moderate alcohol intake are first-line therapies to improve lipid abnormalities in visceral obesity. These lifestyle changes can effectively reduce plasma triglycerides and low density lipoprotein-cholesterol (LDL-C), and raise HDL-C. Kinetic studies show that in visceral obesity, weight loss reduces VLDL-apoB secretion and reciprocally upregulates LDL-apoB catabolism, probably owing to reduced visceral fat mass, enhanced insulin sensitivity and decreased hepatic lipogenesis. Adjunctive pharmacologic treatments, such as HMG-CoA reductase inhibitors, fibric acid derivatives, niacin (nicotinic acid), or fish oils, may often be required to further correct the dyslipidemia. Therapeutic improvements in lipid and lipoprotein profiles in visceral obesity can be achieved by several mechanisms of action, including decreased secretion and increased catabolism of apoB, as well as increased secretion and decreased catabolism of apoA-I. Clinical trials have provided evidence supporting the use of HMG-CoA reductase inhibitors and fibric acid derivatives to treat dyslipidemia in patients with visceral obesity, insulin resistance and type 2 diabetes mellitus. Since drug monotherapy may not adequately optimize dyslipoproteinemia, dual pharmacotherapy may be required, such as HMG-CoA reductase inhibitor/fibric acid derivative, HMG-CoA reductase inhibitor/niacin and HMG-CoA reductase inhibitor/fish oils combinations. Newer therapies, such as cholesterol absorption inhibitors, cholesteryl ester transfer protein antagonists and insulin sensitizers, could also be employed alone or in combination with other agents to optimize treatment. The basis for a multiple approach to correcting dyslipoproteinemia in visceral obesity and the metabolic syndrome relies on understanding the mechanisms of action of the individual therapeutic components.


Asunto(s)
Hiperlipidemias/etiología , Obesidad/complicaciones , Animales , Terapia Combinada , Humanos , Hiperlipidemias/dietoterapia , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/terapia , Hipolipemiantes/uso terapéutico , Resistencia a la Insulina , Estilo de Vida , Obesidad/dietoterapia , Obesidad/tratamiento farmacológico , Obesidad/patología , Obesidad/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA