Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cells ; 9(6)2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32516938

RESUMEN

Genetic and genomic studies of brain disease increasingly demonstrate disease-associated interactions between the cell types of the brain. Increasingly complex and more physiologically relevant human-induced pluripotent stem cell (hiPSC)-based models better explore the molecular mechanisms underlying disease but also challenge our ability to resolve cell type-specific perturbations. Here, we report an extension of the RiboTag system, first developed to achieve cell type-restricted expression of epitope-tagged ribosomal protein (RPL22) in mouse tissue, to a variety of in vitro applications, including immortalized cell lines, primary mouse astrocytes, and hiPSC-derived neurons. RiboTag expression enables depletion of up to 87 percent of off-target RNA in mixed species co-cultures. Nonetheless, depletion efficiency varies across independent experimental replicates, particularly for hiPSC-derived motor neurons. The challenges and potential of implementing RiboTags in complex in vitro cultures are discussed.


Asunto(s)
Perfilación de la Expresión Génica , Modelos Biológicos , Células-Madre Neurales/metabolismo , Células 3T3 , Animales , Técnicas de Cocultivo , Epítopos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Especificidad de la Especie , Transcriptoma/genética
2.
J Neurosci Methods ; 334: 108548, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32065989

RESUMEN

BACKGROUND: Somatic cell reprogramming is routinely used to generate donor-specific human induced pluripotent stem cells (hiPSCs) to facilitate studies of disease in a human context. The directed differentiation of hiPSCs can generate large quantities of patient-derived cells; however, such methodologies frequently yield heterogeneous populations of neurons and glia that require extended timelines to achieve electrophysiological maturity. More recently, transcription factor-based induction protocols have been show to rapidly generate defined neuronal populations from hiPSCs. NEW METHOD: In a manner similar to our previous adaption of NGN2-glutamatergic neuronal induction from hiPSC-derived neural progenitor cells (NPCs), we now adapt an established protocol of lentiviral overexpression of ASCL1 and DLX2 to hiPSC-NPCs. RESULTS: We demonstrate induction of a robust and highly pure population of functional GABAergic neurons (iGANs). Importantly, we successfully applied this technique to hiPSC-NPCs derived from ten donors across two independent laboratories, finding it to be an efficient and highly reproducible approach to generate induced GABAergic neurons. Our results show that, like hiPSC-iGANs, NPC-iGANs exhibit increased GABAergic marker expression, electrophysiological maturity, and have distinct transcriptional profiles that distinguish them from other cell-types of the brain. Nonetheless, until donor-matched hiPSCs-iGANs and NPC-iGANs are directly compared, we cannot rule out the possibility that subtle differences in patterning or maturity may exist between these populations; one should always control for cell source in all iGAN experiments. CONCLUSIONS: This methodology, relying upon an easily cultured starting population of hiPSC-NPCs, makes possible the generation of large-scale defined co-cultures of induced glutamatergic and GABAergic neurons for hiPSC-based disease models and precision drug screening.

3.
Nat Genet ; 51(12): 1679-1690, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31784728

RESUMEN

NRXN1 undergoes extensive alternative splicing, and non-recurrent heterozygous deletions in NRXN1 are strongly associated with neuropsychiatric disorders. We establish that human induced pluripotent stem cell (hiPSC)-derived neurons well represent the diversity of NRXN1α alternative splicing observed in the human brain, cataloguing 123 high-confidence in-frame human NRXN1α isoforms. Patient-derived NRXN1+/- hiPSC-neurons show a greater than twofold reduction in half of the wild-type NRXN1α isoforms and express dozens of novel isoforms from the mutant allele. Reduced neuronal activity in patient-derived NRXN1+/- hiPSC-neurons is ameliorated by overexpression of individual control isoforms in a genotype-dependent manner, whereas individual mutant isoforms decrease neuronal activity levels in control hiPSC-neurons. In a genotype-dependent manner, the phenotypic impact of patient-specific NRXN1+/- mutations can occur through a reduction in wild-type NRXN1α isoform levels as well as the presence of mutant NRXN1α isoforms.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al Calcio/genética , Células Madre Pluripotentes Inducidas/fisiología , Moléculas de Adhesión de Célula Nerviosa/genética , Esquizofrenia/genética , Animales , Trastorno del Espectro Autista/genética , Trastorno Bipolar/genética , Estudios de Casos y Controles , Trastorno Depresivo Mayor/genética , Femenino , Expresión Génica , Heterocigoto , Humanos , Masculino , Ratones , Isoformas de Proteínas/genética , Eliminación de Secuencia
4.
Nat Genet ; 51(10): 1475-1485, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548722

RESUMEN

The mechanisms by which common risk variants of small effect interact to contribute to complex genetic disorders are unclear. Here, we apply a genetic approach, using isogenic human induced pluripotent stem cells, to evaluate the effects of schizophrenia (SZ)-associated common variants predicted to function as SZ expression quantitative trait loci (eQTLs). By integrating CRISPR-mediated gene editing, activation and repression technologies to study one putative SZ eQTL (FURIN rs4702) and four top-ranked SZ eQTL genes (FURIN, SNAP91, TSNARE1 and CLCN3), our platform resolves pre- and postsynaptic neuronal deficits, recapitulates genotype-dependent gene expression differences and identifies convergence downstream of SZ eQTL gene perturbations. Our observations highlight the cell-type-specific effects of common variants and demonstrate a synergistic effect between SZ eQTL genes that converges on synaptic function. We propose that the links between rare and common variants implicated in psychiatric disease risk constitute a potentially generalizable phenomenon occurring more widely in complex genetic disorders.


Asunto(s)
Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Células Madre Pluripotentes Inducidas/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Esquizofrenia/genética , Esquizofrenia/patología , Sistemas CRISPR-Cas , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Femenino , Furina/antagonistas & inhibidores , Furina/genética , Furina/metabolismo , Edición Génica , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Proteínas de Ensamble de Clatrina Monoméricas/antagonistas & inhibidores , Proteínas de Ensamble de Clatrina Monoméricas/genética , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Proteínas SNARE/antagonistas & inhibidores , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
5.
Stem Cell Reports ; 9(2): 615-628, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28757163

RESUMEN

Modulation of transcription, either synthetic activation or repression, via dCas9-fusion proteins is a relatively new methodology with the potential to facilitate high-throughput up- or downregulation studies of gene function. Genetic studies of neurodevelopmental disorders have identified a growing list of risk variants, including both common single-nucleotide variants and rare copy-number variations, many of which are associated with genes having limited functional annotations. By applying a CRISPR-mediated gene-activation/repression platform to populations of human-induced pluripotent stem cell-derived neural progenitor cells, neurons, and astrocytes, we demonstrate that it is possible to manipulate endogenous expression levels of candidate neuropsychiatric risk genes across these three cell types. Although proof-of-concept studies using catalytically inactive Cas9-fusion proteins to modulate transcription have been reported, here we present a detailed survey of the reproducibility of gRNA positional effects across a variety of neurodevelopmental disorder-relevant risk genes, donors, neural cell types, and dCas9 effectors.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Calcio/metabolismo , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Imagen Molecular , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA