Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Cell Rep ; 43(5): 114217, 2024 May 28.
Article En | MEDLINE | ID: mdl-38728141

While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.


Brain Edema , Malaria, Cerebral , Animals , Malaria, Cerebral/pathology , Mice , Disease Models, Animal , Lymphatic Vessels/metabolism , Mice, Inbred C57BL , Brain/pathology , Brain/parasitology , Brain/metabolism , Lymph Nodes/pathology , Plasmodium berghei , Female , Male
3.
Sci Signal ; 13(643)2020 08 04.
Article En | MEDLINE | ID: mdl-32753479

Cerebral amyloid angiopathy (CAA) and ß-amyloid (Aß) deposition in the brain parenchyma are hallmarks of Alzheimer's disease (AD). We previously reported that platelets contribute to Aß aggregation in cerebral vessels by secreting the factor clusterin upon binding of Aß40 to the fibrinogen receptor integrin αIIbß3 Here, we investigated the contribution of the collagen receptor GPVI (glycoprotein VI) in platelet-induced amyloid aggregation. Using platelets isolated from GPVI-wild type and GPVI-deficient human donors and mice, we found that Aß40 bound to GPVI, which induced the release of ATP and fibrinogen, resulting in platelet aggregation. Binding of Aß40 to integrin αIIbß3, fibrinogen, and GPVI collectively contributed to the formation of amyloid clusters at the platelet surface. Consequently, blockade of αIIbß3 or genetic loss of GPVI reduced amyloid fibril formation in cultured platelets and decreased the adhesion of Aß-activated platelets to injured carotid arteries in mice. Application of losartan to inhibit collagen binding to GPVI resulted in decreased Aß40-stimulated platelet activation, factor secretion, and platelet aggregation. Furthermore, the application of GPVI- or integrin-blocking antibodies reduced the formation of platelet-associated amyloid aggregates. Our findings indicate that Aß40 promotes platelet-mediated amyloid aggregation by binding to both GPVI and integrin αIIbß3 Blocking these pathways may therapeutically reduce amyloid plaque formation in cerebral vessels and the brain parenchyma of patients.


Amyloid beta-Peptides/metabolism , Blood Platelets/metabolism , Peptide Fragments/metabolism , Platelet Membrane Glycoproteins/metabolism , Protein Aggregation, Pathological/metabolism , Receptors, Collagen/metabolism , Adult , Alzheimer Disease/metabolism , Animals , Blood Platelets/cytology , Cells, Cultured , Fibrinogen/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoproteins/genetics , Protein Binding , Receptors, Collagen/genetics , Signal Transduction
4.
Front Immunol ; 11: 1175, 2020.
Article En | MEDLINE | ID: mdl-32595642

Improving understanding of the bovine adaptive immune response would equip researchers to more efficiently design interventions against pathogens that impact upon food security and animal welfare. There are features of the bovine antibody response that differ substantially from other mammalian species, including the best understood models in the human and mouse. These include the ability to generate a functionally diverse immunoglobulin response despite having a fraction of the germline gene diversity that underpins this process in humans and mice, and the unique structure of a subset of immunoglobulins with "ultralong" HCDR3 domains, which are of significant interest with respect to potential therapeutics, including against human pathogens. However, a more detailed understanding of the B cell response and the production of an effective antibody response in the bovine is currently hampered by the lack of reagents for the B cell lineage. In this article we outline the current state of knowledge and capabilities with regard to B cell and antibody responses in cattle, highlight resource gaps, and summarize recent advances that have the potential to fundamentally advance our understanding of this process in the bovine host.


Antibody Formation/immunology , B-Lymphocytes/immunology , Cattle/immunology , Animals
5.
Blood Adv ; 3(3): 275-287, 2019 02 12.
Article En | MEDLINE | ID: mdl-30700416

Fucoidans are sulfated fucose-based polysaccharides that activate platelets and have pro- and anticoagulant effects; thus, they may have therapeutic value. In the present study, we show that 2 synthetic sulfated α-l-fucoside-pendant glycopolymers (with average monomeric units of 13 and 329) and natural fucoidans activate human platelets through a Src- and phosphatidylinositol 3-kinase (PI3K)-dependent and Syk-independent signaling cascade downstream of the platelet endothelial aggregation receptor 1 (PEAR1). Synthetic glycopolymers and natural fucoidan stimulate marked phosphorylation of PEAR1 and Akt, but not Syk. Platelet aggregation and Akt phosphorylation induced by natural fucoidan and synthetic glycopolymers are blocked by a monoclonal antibody to PEAR1. Direct binding of sulfated glycopolymers to epidermal like growth factor (EGF)-like repeat 13 of PEAR1 was shown by avidity-based extracellular protein interaction screen technology. In contrast, synthetic glycopolymers and natural fucoidans activate mouse platelets through a Src- and Syk-dependent pathway regulated by C-type lectin-like receptor 2 (CLEC-2) with only a minor role for PEAR1. Mouse platelets lacking the extracellular domain of GPIbα and human platelets treated with GPIbα-blocking antibodies display a reduced aggregation response to synthetic glycopolymers. We found that synthetic sulfated glycopolymers bind directly to GPIbα, substantiating that GPIbα facilitates the interaction of synthetic glycopolymers with CLEC-2 or PEAR1. Our results establish PEAR1 as the major signaling receptor for natural fucose-based polysaccharides and synthetic glycopolymers in human, but not in mouse, platelets. Sulfated α-l-fucoside-pendant glycopolymers are unique tools for further investigation of the physiological role of PEAR1 in platelets and beyond.


Platelet Aggregation/drug effects , Platelet Glycoprotein GPIb-IX Complex/metabolism , Polysaccharides/pharmacology , Receptors, Cell Surface/blood , Animals , Biopolymers/pharmacology , Calcium/blood , Humans , Mice , Mice, Knockout , Syk Kinase/blood
7.
Mol Cell ; 70(1): 106-119.e10, 2018 04 05.
Article En | MEDLINE | ID: mdl-29625032

A current challenge in cell motility studies is to understand the molecular and physical mechanisms that govern chemokine receptor nanoscale organization at the cell membrane, and their influence on cell response. Using single-particle tracking and super-resolution microscopy, we found that the chemokine receptor CXCR4 forms basal nanoclusters in resting T cells, whose extent, dynamics, and signaling strength are modulated by the orchestrated action of the actin cytoskeleton, the co-receptor CD4, and its ligand CXCL12. We identified three CXCR4 structural residues that are crucial for nanoclustering and generated an oligomerization-defective mutant that dimerized but did not form nanoclusters in response to CXCL12, which severely impaired signaling. Overall, our data provide new insights to the field of chemokine biology by showing that receptor dimerization in the absence of nanoclustering is unable to fully support CXCL12-mediated responses, including signaling and cell function in vivo.


Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cell Movement , Nanoparticles , Receptors, CXCR4/metabolism , T-Lymphocytes/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/immunology , Amino Acid Motifs , Animals , CD4 Antigens/metabolism , Cell Membrane/drug effects , Cell Membrane/immunology , Chemokine CXCL12/pharmacology , HEK293 Cells , Humans , Jurkat Cells , Ligands , Mice, Inbred C57BL , Mutation , Protein Multimerization , Protein Transport , Receptors, CXCR4/drug effects , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Signal Transduction , Single Molecule Imaging , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
8.
Medicentro (Villa Clara) ; 21(3): 282-286, jul.-set. 2017.
Article Es | LILACS | ID: biblio-894394

Los cuerpos extraños esofágicos constituyen una enfermedad relativamente frecuente en los servicios de urgencias de los centros hospitalarios, lo que hace que el profesional de la salud se enfrente con el problema de decidir una conducta expectante, solicitar esofagoscopia o indicar cirugía para lograr un resultado óptimo. Se presenta un paciente con cuerpo extraño esofágico y estenosis en el tercio superior del órgano. El cuadro clínico se caracterizó por disfagia y sialorrea. En los exámenes imagenológicos realizados se observó una imagen radiopaca a nivel del tercio superior del esófago, y mediante tomografía computarizada se constató el engrosamiento del esófago que disminuía la luz del órgano. Se extrajo mediante endoscopia rígida y el paciente egresó a los siete días sin complicaciones mediatas.


Endoscopy , Esophageal Stenosis , Foreign Bodies
9.
Medicentro (Villa Clara) ; 21(3)jul.-sep. 2017. ilus
Article Es | CUMED | ID: cum-69526

Los cuerpos extraños esofágicos constituyen una enfermedad relativamente frecuente en los servicios de urgencias de los centros hospitalarios, lo que hace que el profesional de la salud se enfrente con el problema de decidir una conducta expectante, solicitar esofagoscopia o indicar cirugía para lograr un resultado óptimo. Se presenta un paciente con cuerpo extraño esofágico y estenosis en el tercio superior del órgano. El cuadro clínico se caracterizó por disfagia y sialorrea. En los exámenes imagenológicos realizados se observó una imagen radiopaca a nivel del tercio superior del esófago, y mediante tomografía computarizada se constató el engrosamiento del esófago que disminuía la luz del órgano. Se extrajo mediante endoscopia rígida y el paciente egresó a los siete días sin complicaciones mediatas(AU)


Humans , Male , Aged , Foreign Bodies , Esophageal Stenosis , Endoscopy
10.
Methods Mol Biol ; 1272: 173-88, 2015.
Article En | MEDLINE | ID: mdl-25563184

The G protein-coupled receptors (GPCRs) form one of the largest membrane receptor families. The nature of the ligands that interact with these receptors is highly diverse; they include light, peptides and hormones, neurotransmitters, and small molecular weight compounds. The GPCRs are involved in a wide variety of physiological processes and thus hold considerable therapeutic potential.GPCR function is usually determined in cell-based assays, whose complexity nonetheless limits their use. The use of alternative, cell-free assays is hampered by the difficulties in purifying these seven-transmembrane domain receptors without altering their functional properties. Several methods have been proposed to immobilize GPCR on biosensor surfaces which use antibodies or avidin-/biotin-based capture procedures, alone or with reconstitution of the GPCR physiological microenvironment. Here we propose a method for GPCR immobilization in their native membrane microenvironment that requires no manipulation of the target receptor and maintains the many conformations GPCR can adopt in the cell membrane.


Genetic Vectors/metabolism , Immobilized Proteins/genetics , Lentivirus/genetics , Plasmids/metabolism , Receptors, CXCR4/genetics , Vesiculovirus/genetics , Carbocyanines , Fluorescent Dyes , Gene Expression , Genetic Vectors/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Immobilized Proteins/metabolism , Lentivirus/metabolism , Plasmids/chemistry , Receptors, CXCR4/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Surface Plasmon Resonance/methods , Transfection , Vesiculovirus/metabolism , Virion , Virus Assembly/genetics
11.
Proc Natl Acad Sci U S A ; 111(19): E1960-9, 2014 May 13.
Article En | MEDLINE | ID: mdl-24778234

CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4(+) T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.


CD4 Antigens/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Actin Depolymerizing Factors/metabolism , CD4 Antigens/chemistry , Cell Fusion , Dimerization , Flow Cytometry , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Jurkat Cells , Lim Kinases/metabolism , Protein Binding/physiology , Protein Structure, Quaternary , Receptors, CCR5/chemistry , Receptors, CXCR4/chemistry , Th1 Cells/metabolism , Th1 Cells/virology , Th2 Cells/metabolism , Th2 Cells/virology
12.
J Immunol ; 192(8): 3858-67, 2014 Apr 15.
Article En | MEDLINE | ID: mdl-24639350

The CCL2 chemokine mediates monocyte egress from bone marrow and recruitment into inflamed tissues through interaction with the CCR2 chemokine receptor, and its expression is upregulated by proinflammatory cytokines. Analysis of the gene expression profile in GM-CSF- and M-CSF-polarized macrophages revealed that a high CCL2 expression characterizes macrophages generated under the influence of M-CSF, whereas CCR2 is expressed only by GM-CSF-polarized macrophages. Analysis of the factors responsible for this differential expression identified activin A as a critical factor controlling the expression of the CCL2/CCR2 pair in macrophages, as activin A increased CCR2 expression but inhibited the acquisition of CCL2 expression by M-CSF-polarized macrophages. CCL2 and CCR2 were found to determine the extent of macrophage polarization because CCL2 enhances the LPS-induced production of IL-10, whereas CCL2 blockade leads to enhanced expression of M1 polarization-associated genes and cytokines, and diminished expression of M2-associated markers in human macrophages. Along the same line, Ccr2-deficient bone marrow-derived murine macrophages displayed an M1-skewed polarization profile at the transcriptomic level and exhibited a significantly higher expression of proinflammatory cytokines (TNF-α, IL-6) in response to LPS. Therefore, the CCL2-CCR2 axis regulates macrophage polarization by influencing the expression of functionally relevant and polarization-associated genes and downmodulating proinflammatory cytokine production.


Chemokine CCL2/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Activins/pharmacology , Animals , Chemokine CCL2/metabolism , Chemokine CCL8/genetics , Chemokine CCL8/metabolism , Cluster Analysis , Gene Expression Regulation/drug effects , Humans , Lipopolysaccharides/immunology , Macrophages/immunology , Mice , Mice, Knockout , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Transcriptome
13.
FASEB J ; 26(12): 4841-54, 2012 Dec.
Article En | MEDLINE | ID: mdl-22913878

B-cell movement into lymphoid follicles depends on the expression of the chemokine receptor CXCR5 and the recently reported Epstein-Barr virus-induced receptor 2 (EBI2). In cooperation with CXCR5, EBI2 helps to position activated B cells in the follicle, although the mechanism is poorly understood. Using human HEK293T cells and fluorescence resonance energy transfer (FRET) techniques, we demonstrate that CXCR5 and EBI2 form homo- and heterodimers. EBI2 expression modulated CXCR5 homodimeric complexes, as indicated by the FRET(50) value (CXCR5 homodimer, 0.9851±0.0784; CXCR5 homodimer+EBI2, 1.7320±0.4905; P<0.05). HEK293T cells expressing CXCR5/EBI2 and primary activated murine B cells both down-modulated CXCR5-mediated responses, such as Ca(2+) flux, cell migration, and MAPK activation; this modulation did not occur when primary B cells were obtained from EBI2(-/-) mice. The mechanism involves a reduction in binding affinity of the ligand (CXCL13) for CXCR5 (K(D): 5.05×10(-8) M for CXCR5 alone vs. 1.49×10(-7) M for CXCR5/EBI2) and in the efficacy (E(max)) of G-protein activation in CXCR5/EBI2-coexpressing cells (42.33±4.3%; P<0.05). These findings identify CXCR5/EBI2 heterodimers as functional units that contribute to the plasticity of CXCL13-mediated B-cell responses.


Chemokine CXCL13/metabolism , Receptors, CXCR5/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , B-Lymphocytes/metabolism , Binding, Competitive , Blotting, Western , Cell Movement , Cells, Cultured , Chemokine CXCL13/genetics , Fluorescence Resonance Energy Transfer , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , HEK293 Cells , Humans , Kinetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Multimerization , Radioligand Assay , Receptors, CXCR5/chemistry , Receptors, CXCR5/genetics , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Transfection
14.
Pharmacol Ther ; 131(3): 351-8, 2011 Sep.
Article En | MEDLINE | ID: mdl-21600920

Since the first reports on chemokine function, much information has been generated on the implications of these molecules in numerous physiological and pathological processes, as well as on the signaling events activated through their binding to receptors. Despite these extensive studies, no chemokine-related drugs have yet been approved for use in patients with inflammatory or autoimmune diseases. This discrepancy between efforts and results has forced a re-evaluation of the chemokine field. We have explored chemokine receptor conformations at the cell surface and found that, as is the case for other G protein-coupled receptors, chemokine receptors are not isolated entities that are activated following ligand binding; rather, they are found as dimers and/or higher order oligomers at the cell surface, even in the absence of ligands. These complexes form organized arrays that can be modified by receptor expression and ligand levels, indicating that they are dynamic structures. The way in which these receptor complexes are stabilized modulates ligand binding, as well as their pharmacological properties and the signaling events activated. These conformations thus represent a mechanism that increases the broad variety of chemokine functions. Understanding these receptor interactions and their dynamics at the cell surface is thus critical for influencing chemokine function and could open up new possibilities for drug design.


Chemokines/chemistry , Chemokines/metabolism , Receptors, Chemokine/chemistry , Receptors, Chemokine/metabolism , Animals , Drug Design , Protein Binding , Protein Conformation
...