Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Article En | MEDLINE | ID: mdl-38750253

OBJECTIVE: COASY, the gene encoding the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of cellular de novo coenzyme A (CoA) biosynthesis, has been linked to two exceedingly rare autosomal recessive disorders, such as COASY protein-associated neurodegeneration (CoPAN), a form of neurodegeneration with brain iron accumulation (NBIA), and pontocerebellar hypoplasia type 12 (PCH12). We aimed to expand the phenotypic spectrum and gain insights into the pathogenesis of COASY-related disorders. METHODS: Patients were identified through targeted or exome sequencing. To unravel the molecular mechanisms of disease, RNA sequencing, bioenergetic analysis, and quantification of critical proteins were performed on fibroblasts. RESULTS: We identified five new individuals harboring novel COASY variants. While one case exhibited classical CoPAN features, the others displayed atypical symptoms such as deafness, language and autism spectrum disorders, brain atrophy, and microcephaly. All patients experienced epilepsy, highlighting its potential frequency in COASY-related disorders. Fibroblast transcriptomic profiling unveiled dysregulated expression in genes associated with mitochondrial respiration, responses to oxidative stress, transmembrane transport, various cellular signaling pathways, and protein translation, modification, and trafficking. Bioenergetic analysis revealed impaired mitochondrial oxygen consumption in COASY fibroblasts. Despite comparable total CoA levels to control cells, the amounts of mitochondrial 4'-phosphopantetheinylated proteins were significantly reduced in COASY patients. INTERPRETATION: These results not only extend the clinical phenotype associated with COASY variants but also suggest a continuum between CoPAN and PCH12. The intricate interplay of altered cellular processes and signaling pathways provides valuable insights for further research into the pathogenesis of COASY-associated diseases.

2.
Am J Hum Genet ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38744284

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.

3.
Eur J Hum Genet ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38806662

Tuberous sclerosis complex (TSC) is a rare multisystemic disorder caused by a pathogenic variant in the TSC1 or TSC2 gene. A great phenotypic variability characterises TSC. The condition predisposes to the formation of hamartomas in various tissues, neurologic and neurodevelopmental disorders such as epilepsy, psychiatric disorders, as well as intellectual disability in 50%. TSC may be responsible for cardiac rhabdomyomas (CRs), cortical tubers, or subependymal nodules during foetal life. Detecting multiple CRs is associated with a very high risk of TSC, but the CR could be single and isolated. Few data exist to estimate the risk of TSC in these cases. We report the largest series of prenatal genetic tests for TSC with a retrospective study of 240 foetuses presenting with suggestive antenatal signs. We also provide a review of the literature to specify the probability of clinical or genetic diagnosis of TSC in case of detection of single or multiple CRs. Indeed, an early diagnosis is crucial for the counselling of the couple and their families. In this series, a definite diagnosis was assessed in 50% (41/82) of foetuses who initially presented with a single CR and 80.3% (127/158) in cases of multiple CRs. The prevalence of parental germinal mosaicism was 2.6% (3/115).

4.
Front Neurol ; 14: 1266686, 2023.
Article En | MEDLINE | ID: mdl-38020658

In this case study, we report the case of a 13-year-old girl with citrullinemia type 1 (MIM #215700), an autosomal recessive inherited disorder of the urea cycle, which was confirmed by the identification of a homozygous pathogenic variant in the argininosuccinate synthetase 1 (ASS1) gene. However, the patient presented abnormal hyperkinetic movements with global developmental delay and clinical signs that were not fully consistent with those of citrullinemia type 1 or with those of her siblings with isolated citrullinemia type 1. Exome sequencing showed the presence of a de novo heterozygous pathogenic variant in the adenylate cyclase type 5 (ADCY5) gene. The variant confirmed the overlap with the so-called ADCY5-related dyskinesia with orofacial involvement, which is autosomal dominant (MIM #606703), a disorder disrupting the enzymatic conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). In addition to the citrullinemia-related low-protein diet and arginine supplementation, the identification of this second disease led to the introduction of a treatment with caffeine, which considerably improved the dyskinesia neurological picture. In conclusion, this case highlights the importance of clinical-biological confrontation for the interpretation of genetic variants, as one hereditary metabolic disease may hide another with therapeutic consequences. Summary: This article reports the misleading superposition of two inherited metabolic diseases, showing the importance of clinical-biological confrontation in the interpretation of genetic variants.

5.
Mol Genet Metab ; 140(4): 107733, 2023 Dec.
Article En | MEDLINE | ID: mdl-37979236

BACKGROUND: Systemic primary carnitine deficiency (PCD) is characterized by cardiomyopathy and arrhythmia. Without carnitine supplementation, progression is usually towards fatal cardiac decompensation. While the cardiomyopathy is most likely secondary to energy deficiency, the mechanism of arrhythmia is unclear, and may be related to a short QT interval. OBJECTIVE: We aim to describe rhythmic manifestations at diagnosis and with carnitine supplementation. METHODS: French patients diagnosed for PCD were retrospectively included. Clinical and para clinical data at diagnosis and during follow-up were collected. Electrocardiograms with QT interval measurements were blinded reviewed by two paediatric cardiologists. RESULTS: Nineteen patients (median age at diagnosis 2.3 years (extremes 0.3-28.9)) followed in 8 French centres were included. At diagnosis, 21% of patients (4/19) had arrhythmia (2 ventricular fibrillations, 1 ventricular tachycardia and 1 sudden death), and 84% (16/19) had cardiomyopathy. Six electrocardiograms before treatment out of 11 available displayed a short QT (QTc < 340 ms). Median corrected QTc after carnitine supplementation was 404 ms (extremes 341-447) versus 350 ms (extremes 282-421) before treatment (p < 0.001). The whole QTc was prolonged, and no patient reached the criterion of short QT syndrome with carnitine supplementation. Three patients died, probably from rhythmic cause without carnitine supplementation (two extra-hospital sudden deaths and one non-recoverable rhythmic storm before carnitine supplementation), whereas no rhythmic complication occurred in patients with carnitine supplementation. CONCLUSION: PCD is associated with shortening of the QT interval inducing severe arrhythmia. A potential explanation would be a toxic effect of accumulated fatty acid and metabolites on ionic channels embedded in the cell membrane. Carnitine supplementation normalizes the QTc and prevents arrhythmia. Newborn screening of primary carnitine deficiency would prevent avoidable deaths.


Cardiomyopathies , Long QT Syndrome , Infant, Newborn , Child , Humans , Child, Preschool , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Retrospective Studies , Arrhythmias, Cardiac/complications , Cardiomyopathies/complications , Carnitine/metabolism , Electrocardiography/adverse effects
6.
Eur J Neurol ; 30(9): 2828-2837, 2023 09.
Article En | MEDLINE | ID: mdl-37235686

BACKGROUND: Classical infantile-onset Pompe disease (IOPD) is the most severe form of Pompe disease. Enzyme replacement therapy (ERT) has significantly increased survival but only a few studies have reported long-term outcomes. METHODS: We retrospectively analyzed the outcomes of classical IOPD patients diagnosed in France between 2004 and 2020. RESULTS: Sixty-four patients were identified. At diagnosis (median age 4 months) all patients had cardiomyopathy and most had severe hypotonia (57 of 62 patients, 92%). ERT was initiated in 50 (78%) patients and stopped later due to being ineffective in 10 (21%). Thirty-seven (58%) patients died during follow-up, including all untreated and discontinued ERT patients, and 13 additional patients. Mortality was higher during the first 3 years of life and after the age of 12 years. Persistence of cardiomyopathy during follow-up and/or the presence of heart failure were highly associated with an increased risk of death. In contrast, cross-reactive immunologic material (CRIM)-negative status (n = 16, 26%) was unrelated to increased mortality, presumably because immunomodulation protocols prevent the emergence of high antibody titers to ERT. Besides survival, decreased ERT efficacy appeared after the age of 6 years, with a progressive decline in motor and pulmonary functions for most survivors. CONCLUSIONS: This study reports the long-term follow-up of one of the largest cohorts of classical IOPD patients and demonstrates high long-term mortality and morbidity rates with a secondary decline in muscular and respiratory functions. This decreased efficacy seems to be multifactorial, highlighting the importance of developing new therapeutic approaches targeting various aspects of pathogenesis.


Cardiomyopathies , Glycogen Storage Disease Type II , Humans , Child , Infant , Glycogen Storage Disease Type II/drug therapy , Follow-Up Studies , Retrospective Studies , Enzyme Replacement Therapy/adverse effects , Enzyme Replacement Therapy/methods
7.
Med Sci (Basel) ; 11(2)2023 04 04.
Article En | MEDLINE | ID: mdl-37092498

Recent identification of four additional polyaminopathies, including Bachmann-Bupp syndrome, have benefited from previous research on Snyder-Robinson syndrome in order to advance from research to treatment more quickly. As a result of the discovery of these conditions, the potential for treatment within this pathway, and for other possible unidentified polyaminopathies, the International Center for Polyamine Disorders (ICPD) was created to help promote understanding of these conditions, research opportunities, and appropriate care for families. This case study provides insights from two new patients diagnosed with Bachmann-Bupp syndrome, further expanding our understanding of this ultra-rare condition, as well as a general discussion about other known polyaminopathies. This work also presents considerations for collaborative research efforts across these conditions, along with others that are likely to be identified in time, and outlines the role that the ICPD hopes to fill as more patients with these polyaminopathies continue to be identified and diagnosed.


Eflornithine , Polyamines , Humans , Polyamines/metabolism
8.
Neurology ; 100(23): e2360-e2373, 2023 06 06.
Article En | MEDLINE | ID: mdl-37076312

BACKGROUND AND OBJECTIVE: GLUT1 deficiency syndrome (Glut1DS) is a treatable neurometabolic disease that causes a wide range of neurologic symptoms in children and adults. However, its diagnosis relies on an invasive test, that is, a lumbar puncture (LP) to measure glycorrhachia, and sometimes complex molecular analyses of the SLC2A1 gene. This procedure limits the number of patients able to receive the standard of care. We wished to validate the diagnostic performance of METAglut1, a simple blood test that quantifies GLUT1 on the erythrocyte surface. METHODS: We performed a multicenter validation study in France, involving 33 centers. We studied 2 patient cohorts: a prospective cohort consisting of patients with a clinical suspicion of Glut1DS explored through the reference strategy, that is, LP and analyses of the SLC2A1 gene, and a retrospective cohort that included patients previously diagnosed with Glut1DS. All patients were blind-tested with METAglut1. RESULTS: We analyzed 428 patients in the prospective cohort, including 15 patients newly diagnosed with Glut1DS, and 67 patients in the retrospective cohort. METAglut1 was 80% sensitive and >99% specific for the diagnosis of Glut1DS. Concordance analyses showed a substantial agreement between METAglut1 and glycorrhachia. In the prospective cohort, the positive predictive value of METAglut1 was slightly higher than that of glycorrhachia. METAglut1 succeeded to identify patients with Glut1DS with SCL2A1 mosaicism and variants of unknown significance. DISCUSSION: METAglut1 is an easily performed, robust, and noninvasive diagnostic test for the diagnosis of Glut1DS, which allows wide screening of children and adults, including those with atypical forms of this treatable condition. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that a positive METAglut1 test accurately distinguishes patients with suspected GLUT1 deficiency syndrome from other neurologic syndromes as compared with invasive and genetic testing.


Carbohydrate Metabolism, Inborn Errors , Adult , Child , Humans , Retrospective Studies , Prospective Studies , Carbohydrate Metabolism, Inborn Errors/diagnosis , Carbohydrate Metabolism, Inborn Errors/genetics , Monosaccharide Transport Proteins/genetics
9.
Nat Commun ; 14(1): 1009, 2023 02 23.
Article En | MEDLINE | ID: mdl-36823193

Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.


Transcription Factors , Zebrafish , Child , Animals , Humans , Transcription Factors/genetics , RNA, Mitochondrial , Zebrafish/genetics , Zebrafish/metabolism , DNA, Mitochondrial/genetics , Transcription, Genetic , Mutation , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
10.
Elife ; 122023 01 17.
Article En | MEDLINE | ID: mdl-36648066

TRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in TRPM3 were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function . Here, we report a further 10 patients carrying one of seven additional heterozygous TRPM3 missense variants. These patients present with a broad spectrum of neurodevelopmental symptoms, including global developmental delay, intellectual disability, epilepsy, musculo-skeletal anomalies, and altered pain perception. We describe a cerebellar phenotype with ataxia or severe hypotonia, nystagmus, and cerebellar atrophy in more than half of the patients. All disease-associated variants exhibited a robust gain-of-function phenotype, characterized by increased basal activity leading to cellular calcium overload and by enhanced responses to the neurosteroid ligand pregnenolone sulfate when co-expressed with wild-type TRPM3 in mammalian cells. The antiseizure medication primidone, a known TRPM3 antagonist, reduced the increased basal activity of all mutant channels. These findings establish gain-of-function of TRPM3 as the cause of a spectrum of autosomal dominant neurodevelopmental disorders with frequent cerebellar involvement in humans and provide support for the evaluation of TRPM3 antagonists as a potential therapy.


Epilepsy , Neurodevelopmental Disorders , Neurosteroids , TRPM Cation Channels , Animals , Humans , Gain of Function Mutation , Neurodevelopmental Disorders/genetics , Epilepsy/genetics , Ion Channels/genetics , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Mammals/metabolism
11.
J Pediatr ; 254: 39-47.e4, 2023 03.
Article En | MEDLINE | ID: mdl-36265570

OBJECTIVE: The objective of this study was to compare the quality of life (QoL) for parents of children with inborn errors of metabolism (IEMs) requiring a restricted diet with French population norms and investigate parental QoL determinants. STUDY DESIGN: This cross-sectional study included mothers and/or fathers of children < 18 years of age affected by IEMs requiring a restricted diet (except phenylketonuria) from January 2015 to December 2017. Parents' QoL was assessed using the World Health Organization Quality of Life BREF questionnaire and compared with age- and sex-matched reference values from the French general population. Linear mixed models were used to examine the effects of demographic, socioeconomic, disease-related, and psychocognitive factors on parental QoL, according to a 2-level regression model considering individuals (parents) nested within families. RESULTS: Of the 1156 parents invited to participate, 785 (68%) were included. Compared with the general population, parents of children with IEMs requiring a restricted diet reported a lower QoL in physical and social relationship domains but a higher QoL in the psychological domain. In the multivariate analysis, characteristics associated with poorer parental QoL included both parent-related factors (being a father, older age, more educated parent, nonworking parent, greater anxiety, seeking more social support, and using less positive thinking and problem-solving coping strategies) and family-related factors (disease complications, increased number of hospital medical providers, child's younger age, single-parent family, and lower family material wealth). CONCLUSION: Parents of children with IEMs requiring a restricted diet reported poorer QoL in physical and social relationship domains than population norms. Psychocognitive factors, beyond disease-specific and family-related characteristics, were the most important determinants influencing parental QoL and may represent essential aspects for interventions. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT02552784.


Metabolism, Inborn Errors , Quality of Life , Female , Humans , Child , Quality of Life/psychology , Multilevel Analysis , Cross-Sectional Studies , Parents/psychology , Surveys and Questionnaires , Diet
12.
Life (Basel) ; 12(11)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36362876

X-linked ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle defect. The disease severity ranges from asymptomatic carrier state to severe neonatal presentation with hyperammonaemic encephalopathy. We audited the diagnosis and management of OTCD, using an online 12-question-survey that was sent to 75 metabolic centres in Turkey, France and the UK. Thirty-nine centres responded and 495 patients were reported in total. A total of 208 French patients were reported, including 71 (34%) males, 86 (41%) symptomatic and 51 (25%) asymptomatic females. Eighty-five Turkish patients included 32 (38%) males, 39 (46%) symptomatic and 14 (16%) asymptomatic females. Out of the 202 UK patients, 66 (33%) were male, 83 (41%) asymptomatic and 53 (26%) symptomatic females. A total of 19%, 12% and 7% of the patients presented with a neonatal-onset phenotype in France, Turkey and the UK, respectively. Vomiting, altered mental status and encephalopathy were the most common initial symptoms in all three countries. While 69% in France and 79% in Turkey were receiving protein restriction, 42% were on a protein-restricted diet in the UK. A total of 76%, 47% and 33% of patients were treated with ammonia scavengers in Turkey, France and the UK, respectively. The findings of our audit emphasize the differences and similarities in manifestations and management practices in three countries.

13.
Nat Commun ; 13(1): 6841, 2022 11 11.
Article En | MEDLINE | ID: mdl-36369169

Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.


Neurodevelopmental Disorders , Zebrafish , Humans , Animals , Zebrafish/genetics , Zebrafish/metabolism , ADP-Ribosylation Factors/metabolism , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism
14.
Orphanet J Rare Dis ; 17(1): 329, 2022 09 02.
Article En | MEDLINE | ID: mdl-36056437

BACKGROUND: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal disorder caused by mutations in the arylsulfatase A gene. Until now, there has been little information on the burden of MLD on patients and their caregivers. This multinational study aims to quantify caregiver-related impacts of MLD across several key domains including symptoms, treatment burden, time investment, social and emotional well-being, and professional and financial impact. RESULTS: Data were collected through moderator-assisted web survey and telephone interviews. The survey was developed with extensive input from clinical experts and MLD patient advocacy groups. The EQ-5D-5L questionnaire was administered during follow-up interviews. The total sample consisted of parents of MLD patients in the US (n = 10), France (n = 10), Germany (n = 6), UK (n = 5), Belgium (n = 1), and Norway (n = 2). The impact of MLD is evident from the EQ-5D-5L scores, which indicate utility values for caregivers below respective national population norms and a higher proportion of caregivers reporting problems with anxiety/depression. Time involved for care was demonstrated by a mean of 4.1 inpatient and 29.6 outpatient hospital visits in the previous 12-month period. These commitments place stress on familial relationships with 50% of caregivers reporting their child's MLD diagnosis had negatively impacted their relationship with their spouse/partner. Professionally, 76.5% of caregivers stopped working or switched to part-time employment following their child's MLD diagnosis, and most acknowledged caring for their child had affected their potential for career progression or promotion. Differences are also observed based on late infantile versus juvenile onset MLD, time since diagnosis, and for transplanted patients versus those who received palliative care only. CONCLUSIONS: This multinational study demonstrates that MLD consistently negatively affects many aspects of caregivers' lives including health, relationships, and professional status, irrespective of location. We expect that the results of this study are generalizable to other countries. This study enhances our understanding of MLD caregiver impacts, which could improve patient care and assist in identifying support for individuals with MLD and their families.


Leukodystrophy, Metachromatic , Quality of Life , Caregivers , Child , Family , Humans , Leukodystrophy, Metachromatic/genetics , Quality of Life/psychology , Surveys and Questionnaires
15.
Biomedicines ; 10(7)2022 Jul 11.
Article En | MEDLINE | ID: mdl-35884972

(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.

16.
Genet Med ; 24(7): 1583-1591, 2022 07.
Article En | MEDLINE | ID: mdl-35499524

PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.


Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Phosphoproteins , Transcription Factors , Gene Expression Regulation , Heterozygote , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phosphoproteins/genetics , Transcription Factors/genetics
17.
Mov Disord ; 37(6): 1294-1298, 2022 06.
Article En | MEDLINE | ID: mdl-35384065

BACKGROUND: ADCY5-related dyskinesia is characterized by early-onset movement disorders. There is currently no validated treatment, but anecdotal clinical reports and biological hypotheses suggest efficacy of caffeine. OBJECTIVE: The aim is to obtain further insight into the efficacy and safety of caffeine in patients with ADCY5-related dyskinesia. METHODS: A retrospective study was conducted worldwide in 30 patients with a proven ADCY5 mutation who had tried or were taking caffeine for dyskinesia. Disease characteristics and treatment responses were assessed through a questionnaire. RESULTS: Caffeine was overall well tolerated, even in children, and 87% of patients reported a clear improvement. Caffeine reduced the frequency and duration of paroxysmal movement disorders but also improved baseline movement disorders and some other motor and nonmotor features, with consistent quality-of-life improvement. Three patients reported worsening. CONCLUSION: Our findings suggest that caffeine should be considered as a first-line therapeutic option in ADCY5-related dyskinesia. © 2022 International Parkinson and Movement Disorder Society.


Dyskinesias , Movement Disorders , Adenylyl Cyclases/genetics , Caffeine/therapeutic use , Child , Dyskinesias/etiology , Dyskinesias/genetics , Humans , Movement Disorders/genetics , Retrospective Studies
18.
Front Psychiatry ; 13: 864445, 2022.
Article En | MEDLINE | ID: mdl-35463509

Background: Mitochondrial disorders (MD) are metabolic diseases related to genetic mutations in mitochondrial DNA and nuclear DNA that cause dysfunction of the mitochondrial respiratory chain. Cognitive impairment and psychiatric symptoms are frequently associated with MD in the adult population. The aim of this study is to describe the neuropsychological profile in children and adolescents with MD. Methods: We prospectively recruited a sample of 12 children and adolescents between February 2019 and February 2020 in the Reference Center for Mitochondrial Disorders of Angers (France). Participants and their parents completed an anamnestic form describing socio-demographic data and completed the WISC-V (Wechsler Intelligence Scale for Children, 5th edition) and the Parent and Teacher forms of the BRIEF (Behavior Rating Inventory of Executive Function). Results: In our sample, the mean IQ (Intellectual Quotient) score was 87.3 ± 25.3. The score ranged from 52 to 120. Concerning executive functions, a significant global clinical complaint was found for parents (six times more than normal) and to a lesser extent, for teachers (among 3 to 4 times more). Levels of intelligence and executive functioning were globally linked in our cohort but dissociation remains a possibility. Conclusion: The results of this study show that MD can be associated to neuropsychological disorders in children and adolescents, especially regarding the intelligence quotient and the executive function. Our study also highlights the need for regular neuropsychological assessments in individuals with MD and developing brains, such as children and adolescents.

19.
HGG Adv ; 3(2): 100097, 2022 Apr 14.
Article En | MEDLINE | ID: mdl-35321494

Mitochondrial disorders are clinically and genetically heterogeneous, with variants in mitochondrial or nuclear genes leading to varied clinical phenotypes. TAMM41 encodes a mitochondrial protein with cytidine diphosphate-diacylglycerol synthase activity: an essential early step in the biosynthesis of phosphatidylglycerol and cardiolipin. Cardiolipin is a mitochondria-specific phospholipid that is important for many mitochondrial processes. We report three unrelated individuals with mitochondrial disease that share clinical features, including lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis. Whole exome and genome sequencing identified compound heterozygous variants in TAMM41 in each proband. Western blot analysis in fibroblasts showed a mild oxidative phosphorylation (OXPHOS) defect in only one of the three affected individuals. In skeletal muscle samples, however, there was severe loss of subunits of complexes I-IV and a decrease in fully assembled OXPHOS complexes I-V in two subjects as well as decreased TAMM41 protein levels. Similar to the tissue-specific observations on OXPHOS, cardiolipin levels were unchanged in subject fibroblasts but significantly decreased in the skeletal muscle of affected individuals. To assess the functional impact of the TAMM41 missense variants, the equivalent mutations were modeled in yeast. All three mutants failed to rescue the growth defect of the Δtam41 strains on non-fermentable (respiratory) medium compared with wild-type TAM41, confirming the pathogenicity of the variants. We establish that TAMM41 is an additional gene involved in mitochondrial phospholipid biosynthesis and modification and that its deficiency results in a mitochondrial disorder, though unlike families with pathogenic AGK (Sengers syndrome) and TAFAZZIN (Barth syndrome) variants, there was no evidence of cardiomyopathy.

20.
ERJ Open Res ; 8(1)2022 Jan.
Article En | MEDLINE | ID: mdl-35141320

Recommended respiratory tests used as major outcomes in clinical trials for MPS treatment cannot be routinely performed in everyday practice because neurocognitive impairment and motor skill difficulties affect compliance for most MPS patients https://bit.ly/3G4qp8U.

...