Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 33(43): e2102102, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34499763

RESUMEN

Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Examples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO3 (STO), albeit in separate studies focusing on one or the other. The demonstration of these effects remains mostly elusive in other oxide interface systems despite their blossoming in the last decade. Here, the observation of both the DEE and IEE in a new interfacial two-dimensional electron gas (2DEG) based on the perovskite oxide KTaO3 is reported. 2DEGs are generated by the simple deposition of Al metal onto KTaO3 single crystals, characterized by angle-resolved photoemission spectroscopy and magnetotransport, and shown to display the DEE through unidirectional magnetoresistance and the IEE by spin-pumping experiments. Their spin-charge interconversion efficiency is then compared with that of STO-based interfaces, related to the 2DEG electronic structure, and perspectives are given for the implementation of KTaO3 2DEGs into spin-orbitronic devices is compared.

2.
ACS Nano ; 15(6): 9775-9781, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34013720

RESUMEN

Multiferroics offer an elegant means to implement voltage control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nanomagnonics is expected to eventually lead to the large-scale integration of magnonic devices. However, a compact voltage-controlled, on demand reconfigurable magnonic system has yet to be shown. Here, we introduce the combination of multiferroics with ferromagnets in a fully epitaxial heterostructure to achieve such voltage-controlled and reconfigurable magnonic systems. Imprinting a remnant electrical polarization in thin multiferroic BiFeO3 with a periodicity of 500 nm yields a modulation of the effective magnetic field in the micrometer-scale, ferromagnetic La2/3Sr1/3MnO3 magnonic waveguide. We evidence the magnetoelectric coupling by characterizing the spin wave propagation spectrum in this artificial, voltage induced, magnonic crystal and demonstrate the occurrence of a robust magnonic band gap with >20 dB rejection.

3.
Nature ; 580(7804): 483-486, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322081

RESUMEN

After 50 years of development, the technology of today's electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems1 needs to be contained. These two factors require the introduction of non-traditional materials and state variables. As recently highlighted2, the remanence associated with collective switching in ferroic systems is an appealing way to reduce power consumption. A promising approach is spintronics, which relies on ferromagnets to provide non-volatility and to generate and detect spin currents3. However, magnetization reversal by spin transfer torques4 is a power-consuming process. This is driving research on multiferroics to achieve low-power electric-field control of magnetization5, but practical materials are scarce and magnetoelectric switching remains difficult to control. Here we demonstrate an alternative strategy to achieve low-power spin detection, in a non-magnetic system. We harness the electric-field-induced ferroelectric-like state of strontium titanate (SrTiO3)6-9 to manipulate the spin-orbit properties10 of a two-dimensional electron gas11, and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. This non-volatile effect opens the way to the electric-field control of spin currents and to ultralow-power spintronics, in which non-volatility would be provided by ferroelectricity rather than by ferromagnetism.

4.
Nano Lett ; 20(1): 395-401, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31859513

RESUMEN

Spintronics entails the generation, transport, manipulation and detection of spin currents, usually in hybrid architectures comprising interfaces whose impact on performance is detrimental. In addition, how spins are generated and detected is generally material specific and determined by the electronic structure. Here, we demonstrate spin current generation, transport and electrical detection, all within a single non-magnetic material system: a SrTiO3 two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling. We show that the spin current is generated from a charge current by the 2D spin Hall effect, transported through a channel and reconverted into a charge current by the inverse 2D spin Hall effect. Furthermore, by adjusting the Fermi energy with a gate voltage we tune the generated and detected spin polarization and relate it to the complex multiorbital band structure of the 2DEG. We discuss the leading mechanisms of the spin-charge interconversion processes and argue for the potential of quantum oxide materials for future all-electrical low-power spin-based logic.

5.
Nat Mater ; 18(11): 1187-1193, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31501554

RESUMEN

While spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin-orbitronics exploits the efficient spin-charge interconversion enabled by spin-orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO3 two-dimensional electron gas and map its gate dependence on the band structure. We show that the conversion process is amplified by enhanced Rashba-like splitting due to orbital mixing and in the vicinity of avoided band crossings with topologically non-trivial order. Our results indicate that oxide two-dimensional electron gases are strong candidates for spin-based information readout in new memory and transistor designs. Our results also emphasize the promise of topology as a new ingredient to expand the scope of complex oxides for spintronics.

6.
J Vis Exp ; (132)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29553560

RESUMEN

The quasi 2D electron system (q2DES) that forms at the interface between LaAlO3 (LAO) and SrTiO3 (STO) has attracted much attention from the oxide electronics community. One of its hallmark features is the existence of a critical LAO thickness of 4 unit-cells (uc) for interfacial conductivity to emerge. Although electrostatic mechanisms have been proposed in the past to describe the existence of this critical thickness, the importance of chemical defects has been recently accentuated. Here, we describe the growth of metal/LAO/STO heterostructures in an ultra-high vacuum (UHV) cluster system combining pulsed laser deposition (to grow the LAO), magnetron sputtering (to grow the metal) and X-ray photoelectron spectroscopy (XPS). We study step by step the formation and evolution of the q2DES and the chemical interactions that occur between the metal and the LAO/STO. Additionally, magnetotransport experiments elucidate on the transport and electronic properties of the q2DES. This systematic work not only demonstrates a way to study the electrostatic and chemical interplay between the q2DES and its environment, but also unlocks the possibility to couple multifunctional capping layers with the rich physics observed in two-dimensional electron systems, allowing the fabrication of new types of devices.


Asunto(s)
Metales/química , Óxidos/química , Electricidad Estática , Estroncio/química , Titanio/química
7.
Nano Lett ; 18(4): 2226-2232, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29589952

RESUMEN

Perovskite rare-earth nickelates RNiO3 are prototype correlated oxides displaying a metal-insulator transition (MIT) at a temperature tunable by the ionic radius of the rare-earth R. Although its precise origin remains a debated topic, the MIT can be exploited in various types of applications, notably for resistive switching and neuromorphic computation. So far, the MIT has been mostly studied by macroscopic techniques, and insights into its nanoscale mechanisms were only provided recently by X-ray photoemission electron microscopy through absorption line shifts, used as an indirect proxy to the resistive state. Here, we directly image the local resistance of NdNiO3 thin films across their first-order MIT using conductive-atomic force microscopy. Our resistance maps reveal the nucleation of ∼100-300 nm metallic domains in the insulating state that grow and percolate as temperature increases. We discuss the resistance contrast mechanism, analyze the microscopy and transport data within a percolation model, and propose experiments to harness this mesoscopic electronic texture in devices.

8.
Adv Mater ; 29(28)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28505388

RESUMEN

The quasi 2D electron system (q2DES) that forms at the interface between LaAlO3 and SrTiO3 has attracted much attention from the oxide electronics community. One of its hallmark features is the existence of a critical LaAlO3 thickness of 4 unit-cells (uc) for interfacial conductivity to emerge. In this paper, the chemical, electronic, and transport properties of LaAlO3 /SrTiO3 samples capped with different metals grown in a system combining pulsed laser deposition, sputtering, and in situ X-ray photoemission spectroscopy are investigated. The results show that for metals with low work function a q2DES forms at 1-2 uc of LaAlO3 and is accompanied by a partial oxidation of the metal, a phenomenon that affects the q2DES properties and triggers the formation of defects. In contrast, for noble metals, the critical thickness is increased above 4 uc. The results are discussed in terms of a hybrid mechanism that incorporates electrostatic and chemical effects.

9.
Nat Commun ; 8: 14736, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368007

RESUMEN

In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.


Asunto(s)
Electricidad , Hierro/química , Redes Neurales de la Computación , Factores de Tiempo
10.
Nat Commun ; 7: 11614, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27192941

RESUMEN

Giant magnetocaloric materials are promising for solid-state refrigeration, as an alternative to hazardous gases used in conventional cooling devices. A giant magnetocaloric effect was discovered near room temperature in near-equiatomic FeRh alloys some years before the benchmark study in Gd5Si2Ge2 that launched the field. However, FeRh has attracted significantly less interest in cooling applications mainly due to irreversibility in magnetocaloric cycles associated with the large hysteresis of its first-order metamagnetic phase transition. Here we overcome the irreversibility via a dual-stimulus magnetic-electric refrigeration cycle in FeRh thin films via coupling to a ferroelectric BaTiO3 substrate. This experimental realization of a multicaloric cycle yields larger reversible caloric effects than either stimulus alone. While magnetic hysteretic losses appear to be reduced by 96% in dual-stimulus loops, we show that the losses are simply transferred into an elastic cycle, contrary to common belief. Nevertheless, we show that these losses do not necessarily prohibit integration of FeRh in practical refrigeration systems. Our demonstration of a multicaloric refrigeration cycle suggests numerous designs for efficient solid-state cooling applications.

11.
Spinal Cord Ser Cases ; 2: 16012, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28053756

RESUMEN

The purpose of this single-subject case study was to quantify the effect of gait-like vibration training on gait abilities after an incomplete spinal cord injury (SCI). A 62-year-old male with a chronic American Spinal Injury Association Impairment Scale D SCI at T11 completed nine sessions of gait-like vibration training in a standing position. Self-selected gait speed and distance covered within 6 min were determined before and after training to evaluate the impact of training on gait performance. Associated changes in gait kinematics were assessed with a three-dimensional motion analysis system. Results showed an improvement of gait speed (0.26 vs 0.35 m s-1) and distance (23 vs 37 m) after nine gait-like vibration training sessions (+34.6%; +60.9%). In addition, more bilateral hip extension and larger left hip range of motion improved hip-knee cyclograms. Gait-like vibration training improved gait abilities in a person with chronic incomplete SCI.

12.
Nano Lett ; 15(4): 2533-41, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25768912

RESUMEN

The electric field control of functional properties is a crucial goal in oxide-based electronics. Nonvolatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here, we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca(1-x)Ce(x)MnO3, thus providing insight on how interface-engineering can enhance these switching effects.

13.
Sci Rep ; 3: 2834, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24089020

RESUMEN

The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its "supertetragonal" phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices.

14.
ACS Nano ; 7(6): 5385-90, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23647323

RESUMEN

Ferroelectric tunnel junctions enable a nondestructive readout of the ferroelectric state via a change of resistance induced by switching the ferroelectric polarization. We fabricated submicrometer solid-state ferroelectric tunnel junctions based on a recently discovered polymorph of BiFeO3 with giant axial ratio ("T-phase"). Applying voltage pulses to the junctions leads to the highest resistance changes (OFF/ON ratio >10,000) ever reported with ferroelectric tunnel junctions. Along with the good retention properties, this giant effect reinforces the interest in nonvolatile memories based on ferroelectric tunnel junctions. We also show that the changes in resistance scale with the nucleation and growth of ferroelectric domains in the ultrathin BiFeO3 (imaged by piezoresponse force microscopy), thereby suggesting potential as multilevel memory cells and memristors.

15.
Nat Mater ; 11(10): 860-4, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22983431

RESUMEN

Memristors are continuously tunable resistors that emulate biological synapses. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, although the details of the mechanism remain under debate. Purely electronic memristors based on well-established physical phenomena with albeit modest resistance changes have also emerged. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth, we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures.

16.
Nano Lett ; 12(3): 1141-5, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22268723

RESUMEN

Magnetoelectric multiferroics are attractive materials for the development of low-power electrically controlled spintronic devices. Here we report the optimization of the exchange bias as well as the giant magnetoresistance effect (GMR) of spin valves deposited on top of BiFeO(3)-based heterostructures. We show that the exchange bias can be electrically controlled through a change in the relative proportion of 109° domain walls and propose solutions toward a reversible process.


Asunto(s)
Bismuto/química , Compuestos Férricos/química , Magnetismo/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Campos Electromagnéticos , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
17.
Nano Lett ; 12(1): 376-82, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22191458

RESUMEN

Artificial multiferroic tunnel junctions combining a ferroelectric tunnel barrier of BaTiO(3) with magnetic electrodes display a tunnel magnetoresistance whose intensity can be controlled by the ferroelectric polarization of the barrier. This effect, called tunnel electromagnetoresistance (TEMR), and the corollary magnetoelectric coupling mechanisms at the BaTiO(3)/Fe interface were recently reported through macroscopic techniques. Here, we use advanced spectromicroscopy techniques by means of aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) to probe locally the nanoscale structural and electronic modifications at the ferroelectric/ferromagnetic interface. Atomically resolved real-space spectroscopic techniques reveal the presence of a single FeO layer between BaTiO(3) and Fe. Based on this accurate description of the studied interface, we propose an atomistic model of the ferroelectric/ferromagnetic interface further validated by comparing experimental and simulated STEM images with atomic resolution. Density functional theory calculations allow us to interpret the electronic and magnetic properties of these interfaces and to understand better their key role in the physics of multiferroics nanostructures.


Asunto(s)
Compuestos de Bario/química , Hierro/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Semiconductores , Titanio/química , Conductividad Eléctrica , Transporte de Electrón , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
18.
Nat Nanotechnol ; 7(2): 101-4, 2011 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-22138863

RESUMEN

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.


Asunto(s)
Campos Electromagnéticos , Imanes/química , Nanoestructuras/química , Almacenamiento y Recuperación de la Información , Microscopía de Fuerza Atómica , Nanotecnología/instrumentación , Nanotecnología/métodos , Equipos de Almacenamiento Óptico
19.
Phys Rev Lett ; 107(24): 247002, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22243020

RESUMEN

Using heterostructures that combine a large-polarization ferroelectric (BiFeO3) and a high-temperature superconductor (YBa2Cu3O(7-δ)), we demonstrate the modulation of the superconducting condensate at the nanoscale via ferroelectric field effects. Through this mechanism, a nanoscale pattern of normal regions that mimics the ferroelectric domain structure can be created in the superconductor. This yields an energy landscape for magnetic flux quanta and, in turn, couples the local ferroelectric polarization to the local magnetic induction. We show that this form of magnetoelectric coupling, together with the possibility to reversibly design the ferroelectric domain structure, allows the electrostatic manipulation of magnetic flux quanta.

20.
Nat Mater ; 7(6): 425-6, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18497843
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...