Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 29(5): 1682-1687, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37639214

RESUMEN

We show that diffraction intensity into the first-order Laue zone (FOLZ) of a crystal can have a strong azimuthal dependence, where this FOLZ ring appears solely because of unidirectional atom position modulation. Such a modulation was already known to cause the appearance of elliptical columns in atom-resolution images, but we show that measurement of the angle via four-dimensional scanning transmission electron microscopy (4DSTEM) is far more reliable and allows the measurement of the modulation direction with a precision of about 1° and an accuracy of about 3°. This method could be very powerful in characterizing atomic structures in three dimensions by 4DSTEM, especially in cases where the structure is found only in nanoscale regions or crystals.

5.
Nano Lett ; 23(13): 5975-5980, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37341711

RESUMEN

Phonon scattering at grain boundaries (GBs) is significant in controlling the nanoscale device thermal conductivity. However, GBs could also act as waveguides for selected modes. To measure localized GB phonon modes, milli-electron volt (meV) energy resolution is needed with subnanometer spatial resolution. Using monochromated electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) we have mapped the 60 meV optic mode across GBs in silicon at atomic resolution and compared it to calculated phonon densities of states (DOS). The intensity is strongly reduced at GBs characterized by the presence of 5- and 7-fold rings where bond angles differ from the bulk. The excellent agreement between theory and experiment strongly supports the existence of localized phonon modes and thus of GBs acting as waveguides.

6.
Nano Lett ; 23(7): 2945-2951, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36972518

RESUMEN

Utilizing advanced transmission electron microscopy (TEM), the structure at the (110)-type twin boundary (TB) of Ce-doped GdFeO3 (C-GFO) has been investigated with picometer precision. Such a TB is promising to generate local ferroelectricity within a paraelectric system, while precise knowledge about its structure is still largely missing. In this work, a direct measurement of the cation off-centering with respect to the neighboring oxygen is enabled by integrated differential phase contrast (iDPC) imaging, and up to 30 pm Gd off-centering is highly localized at the TB. Further electron energy loss spectroscopy (EELS) analysis demonstrates a slight accumulation of oxygen vacancies at the TB, a self-balanced behavior of Ce at the Gd sites, and a mixed occupation of Fe2+ and Fe3+ at the Fe sites. Our results provide an informative picture with atomic details at the TB of C-GFO, which is indispensable to further push the potential of grain boundary engineering.

7.
Front Chem ; 10: 945261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958237

RESUMEN

Iridium oxide (IrOx-NP) and palladium nanoparticles (Pd-NP) were supported on a 2,6-dicyanopyridine-based covalent-triazine framework (DCP-CTF) by energy-saving and sustainable microwave-assisted thermal decomposition reactions in propylene carbonate and in the ionic liquid [BMIm][NTf2]. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) confirm well-distributed NPs with sizes from 2 to 13 nm stabilized on the CTF particles. Metal contents between 10 and 41 wt% were determined by flame atomic absorption spectroscopy (AAS). Nitrogen sorption measurements of the metal-loaded CTFs revealed Brunauer-Emmett-Teller (BET) surface areas between 904 and 1353 m2 g-1. The composites show superior performance toward the hydrogen evolution reaction (HER) with low overpotentials from 47 to 325 mV and toward the oxygen reduction reaction (ORR) with high half-wave potentials between 810 and 872 mV. IrOx samples in particular show high performances toward HER while the Pd samples show better performance toward ORR. In both reactions, electrocatalysts can compete with the high performance of Pt/C. Exemplary cyclic voltammetry durability tests with 1000 cycles and subsequent TEM analyses show good long-term stability of the materials. The results demonstrate the promising synergistic effects of NP-decorated CTF materials, resulting in a high electrocatalytic activity and stability.

8.
Ultramicroscopy ; 226: 113296, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34004555

RESUMEN

It is shown that higher order Laue zone (HOLZ) rings in high energy electron diffraction are specific to individual columns of atoms, and show different strengths, structure and radii for different atom columns along the same projection in a structure. An atomic resolution 4-dimensional STEM dataset is recorded from a <110> direction in a perovskite trilayer, where only the central LaFeO3 layer should show a period doubling that gives rise to an extra HOLZ ring. Careful comparison between experiment and multislice simulations is used to understand the origins of all features in the patterns. A strong HOLZ ring is seen for the La-O columns, indicating strong La position modulation along this direction, whereas a weaker ring is seen along the O columns, and a very weak ring is seen along the Fe columns. This demonstrates that atomic resolution HOLZ-STEM is a feasible method for investigating the 3D periodicity of crystalline materials with atomic resolution.

9.
Materials (Basel) ; 14(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800843

RESUMEN

Static dissolution experiments were carried out with the reference International Simple Glass under hyperalkaline pH at 70 °C and very high SA/V ratio. Three aspects of glass dissolution behavior were investigated, (1) the rate drop regime and the residual rate (stage II), (2) the formation of secondary phases including thermodynamic aspects, and (3) the microstructure of the interface of altered glass and secondary phases. A very low residual rate of 6 × 10-6 g/m2d was determined based on boron release, which was several orders of magnitude lower than the initial rate established between the start of the experiments and the first sampling on day 59. The presence of a porous layer with a thickness varying between 80 nm and 250 nm and a pore size between 10 nm and 50 nm was observed. CSH phases with a low Ca/Si ratio of 0.3-0.4 and zeolites were also visible at the surface of the altered glass grains, but no glass alteration resumption occurred, probably due to an important pH decrease already at day 59. Thermodynamic calculations assuming congruent glass dissolution and precipitation of the dissolved aqueous species confirmed the precipitation of CSH phases and zeolites.

10.
Pharmaceutics ; 13(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672398

RESUMEN

Gold nanoparticles (Au NPs) are studied as delivery systems to enhance the effect of the glutaminase1 inhibitor CB839, a promising drug candidate already in clinical trials for tumor treatments. Au NPs were synthesized using a bottom-up approach and covered with polymers able to bind CB839 as a Au-polymer-CB839 conjugate. The drug loading efficiency (DLE) was determined using high-performance liquid chromatography and characterization of the CB839-loaded NPs was done with various microscopic and spectroscopic methods. Despite the chemical inertness of CB839, Au NPs were efficient carriers with a DLE of up to 12%, depending on the polymer used. The therapeutic effect of CB839 with and without Au was assessed in vitro in 2D and 3D glioblastoma (GBM) cell models using different assays based on the colony formation ability of GBM stem cells (GSCs). To avoid readout disturbances from the Au metal, viability methods which do not require optical detection were hereby optimized. These showed that Au NP delivery increased the efficacy of CB839 in GSCs, compared to CB839 alone. Fluorescent microscopy proved successful NP penetration into the GSCs. With this first attempt to combine CB839 with Au nanotechnology, we hope to overcome delivery hurdles of this pharmacotherapy and increase bioavailability in target sites.

11.
Microsc Microanal ; 26(6): 1147-1157, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33190677

RESUMEN

Electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) are used to extract crystallographic information from bulk samples, such as their crystal structure and orientation as well as the presence of any dislocation and grain boundary defects. These techniques rely on the backscattered electron signal, which has a large distribution in electron energy. Here, the influence of plasmon excitations on EBSD patterns and ECCI dislocation images is uncovered by multislice simulations including inelastic scattering. It is shown that the Kikuchi band contrast in an EBSD pattern for silicon is maximum at small energy loss (i.e., few plasmon scattering events following backscattering), consistent with previous energy-filtered EBSD measurements. On the other hand, plasmon excitation has very little effect on the ECCI image of a dislocation. These results are explained by examining the role of the characteristic plasmon scattering angle on the intrinsic contrast mechanisms in EBSD and ECCI.

12.
Beilstein J Nanotechnol ; 11: 770-781, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509491

RESUMEN

Covalent triazine frameworks (CTFs) are little investigated, albeit they are promising candidates for electrocatalysis, especially for the oxygen evolution reaction (OER). In this work, nickel nanoparticles (from Ni(COD)2) were supported on CTF-1 materials, which were synthesized from 1,4-dicyanobenzene at 400 °C and 600 °C by the ionothermal method. CTF-1-600 and Ni/CTF-1-600 show high catalytic activity towards OER and a clear activity for the electrochemical oxygen reduction reaction (ORR). Ni/CTF-1-600 requires 374 mV overpotential in OER to reach 10 mA/cm2, which outperforms the benchmark RuO2 catalyst, which requires 403 mV under the same conditions. Ni/CTF-1-600 displays an OER catalytic activity comparable with many nickel-based electrocatalysts and is a potential candidate for OER. The same Ni/CTF-1-600 material shows a half-wave potential of 0.775 V for ORR, which is slightly lower than that of commercial Pt/C (0.890 V). Additionally, after accelerated durability tests of 2000 cycles, the material showed only a slight decrease in activity towards both OER and ORR, demonstrating its superior stability.

13.
Ultramicroscopy ; 210: 112926, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31955112

RESUMEN

Off-axis electron holography and first moment STEM are sensitive to electromagnetic potentials or fields, respectively. In this work, we investigate in what sense the results obtained from both techniques are equivalent and work out the major differences. The analysis is focused on electrostatic (Coulomb) potentials at atomic spatial resolution. It is shown that the probe-forming/objective aperture strongly affects the reconstructed electrostatic potentials and that, as a result of the different illumination setups, dynamical diffraction effects show a specific response with increasing specimen thickness. It is shown that thermal diffuse scattering is negligible for a wide range of specimen thicknesses, when evaluating the first moment of diffraction patterns.

14.
Beilstein J Nanotechnol ; 10: 1754-1767, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31501747

RESUMEN

NiGa is a catalyst for the semihydrogenation of alkynes. Here we show the influence of different dispersion times before microwave-induced decomposition of the precursors on the phase purity, as well as the influence of the time of microwave-induced decomposition on the crystallinity of the NiGa nanoparticles. Microwave-induced co-decomposition of all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in the ionic liquid [BMIm][NTf2] selectively yields small intermetallic Ni/Ga nanocrystals of 5 ± 1 nm as derived from transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and supported by energy-dispersive X-ray spectrometry (EDX), selected-area energy diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). NiGa@[BMIm][NTf2] catalyze the semihydrogenation of 4-octyne to 4-octene with 100% selectivity towards (E)-4-octene over five runs, but with poor conversion values. IL-free, precipitated NiGa nanoparticles achieve conversion values of over 90% and selectivity of 100% towards alkene over three runs.

15.
Beilstein J Nanotechnol ; 9: 1881-1894, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013882

RESUMEN

Decomposition of rare-earth tris(N,N'-diisopropyl-2-methylamidinato)metal(III) complexes [RE{MeC(N(iPr)2)}3] (RE(amd)3; RE = Pr(III), Gd(III), Er(III)) and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)europium(III) (Eu(dpm)3) induced by microwave heating in the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIm][NTf2]) and in propylene carbonate (PC) yield oxide-free rare-earth metal nanoparticles (RE-NPs) in [BMIm][NTf2] and PC for RE = Pr, Gd and Er or rare-earth metal-fluoride nanoparticles (REF3-NPs) in the fluoride-donating IL [BMIm][BF4] for RE = Pr, Eu, Gd and Er. The crystalline phases and the absence of significant oxide impurities in RE-NPs and REF3-NPs were verified by powder X-ray diffraction (PXRD), selected area electron diffraction (SAED) and high-resolution X-ray photoelectron spectroscopy (XPS). The size distributions of the nanoparticles were determined by transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to an average diameter of (11 ± 6) to (38 ± 17) nm for the REF3-NPs from [BMIm][BF4]. The RE-NPs from [BMIm][NTf2] or PC showed diameters of (1.5 ± 0.5) to (5 ± 1) nm. The characterization was completed by energy-dispersive X-ray spectroscopy (EDX).

16.
Phys Rev Lett ; 120(15): 156101, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756849

RESUMEN

An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe_{2} flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.

17.
Dalton Trans ; 47(27): 8892-8896, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29774331

RESUMEN

A neutral heterobimetallic triple-decker stannole complex was prepared by the reaction of an anionic ruthenocene bearing a stannole dianionic ligand with [Rh(cod)Cl]2 (cod = 1,5-cyclooctadiene), and the resulting Ru-Rh complex exhibits an electronic property different from those of the corresponding Ru-Ru and Rh-Rh complexes. The Ru-Rh complex can be decomposed in ionic liquids to metal nanoparticles.

18.
Dalton Trans ; 47(14): 5083-5097, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29561056

RESUMEN

Three selenoether-functionalized ionic liquids (ILs) of N-[(phenylseleno)methylene]pyridinium (1), N-(methyl)- (2) and N-(butyl)-N'-[(phenylseleno)methylene]imidazolium (3) with bis(trifluoromethanesulfonyl)imide anions ([NTf2]) were prepared from pyridine, N-methylimidazole and N-butylimidazole with in situ obtained phenylselenomethyl chloride, followed by ion exchange to give the desired compounds. The crystal structures of the bromide and tetraphenylborate salts of the above cations (1-Br, 2-BPh4 and 3-BPh4) confirm the formation of the desired cations and indicate a multitude of different supramolecular interactions besides the dominating Coulomb interactions between the cations and anions. The vaporization enthalpies of the synthesized [NTf2]-containing ILs were determined by means of a quartz-crystal microbalance method (QCM) and their densities were measured with an oscillating U-tube. These thermodynamic data have been used to develop a method for assessment of miscibility of conventional solvents in the selenium-containing ILs by using Hildebrandt solubility parameters, as well as for modeling with the electrolyte perturbed-chain statistical associating fluid theory (ePC-SAFT) method. Furthermore, structure-property relations between selenoether-functionalized and similarly shaped corresponding aryl-substituted imidazolium- and pyridinium-based ILs were analyzed and showed that the contribution of the selenium moiety to the enthalpy of vaporization of an IL is equal to the contribution of a methylene (CH2) group. An incremental approach to predict vaporization enthalpies of ILs by a group contribution method has been developed. The reaction of these ILs with zinc acetate dihydrate under microwave irradiation led to ZnSe nanoparticles of an average diameter between 4 and 10 nm, depending on the reaction conditions.

19.
Beilstein J Nanotechnol ; 8: 2474-2483, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234583

RESUMEN

Metal-fluoride nanoparticles, (MF x -NPs) with M = Fe, Co, Pr, Eu, supported on different types of thermally reduced graphite oxide (TRGO) were obtained by microwave-assisted thermal decomposition of transition-metal amidinates, (M{MeC[N(iPr)]2} n ) or [M(AMD) n ] with M = Fe(II), Co(II), Pr(III), and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)europium, Eu(dpm)3, in the presence of TRGO in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). The crystalline phases of the metal fluorides synthesized in [BMIm][BF4] were identified by powder X-ray diffraction (PXRD) to be MF2 for M = Fe, Co and MF3 for M = Eu, Pr. The diameters and size distributions of MF x @TRGO were from (6 ± 2) to (102 ± 41) nm. Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) were used for further characterization of the MF x -NPs. Electrochemical investigations of the FeF2-NPs@TRGO as cathode material for lithium-ion batteries were evaluated by galvanostatic charge/discharge profiles. The results indicate that the FeF2-NPs@TRGO as cathode material can present a specific capacity of 500 mAh/g at a current density of 50 mA/g, including a significant interfacial charge storage contribution. The obtained nanomaterials show a good rate capacity as well (220 mAh/g and 130 mAh/g) at a current density of 200 and 500 mA/g, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...