Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2986, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582862

RESUMEN

Recent cryoEM studies elucidated details of the structural basis for the substrate selectivity and translocation of heteromeric amino acid transporters. However, Asc1/CD98hc is the only neutral heteromeric amino acid transporter that can function through facilitated diffusion, and the only one that efficiently transports glycine and D-serine, and thus has a regulatory role in the central nervous system. Here we use cryoEM, ligand-binding simulations, mutagenesis, transport assays, and molecular dynamics to define human Asc1/CD98hc determinants for substrate specificity and gain insights into the mechanisms that govern substrate translocation by exchange and facilitated diffusion. The cryoEM structure of Asc1/CD98hc is determined at 3.4-3.8 Å resolution, revealing an inward-facing semi-occluded conformation. We find that Ser 246 and Tyr 333 are essential for Asc1/CD98hc substrate selectivity and for the exchange and facilitated diffusion modes of transport. Taken together, these results reveal the structural bases for ligand binding and transport features specific to human Asc1.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Cadena Pesada de la Proteína-1 Reguladora de Fusión , Humanos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/química , Ligandos , Simulación de Dinámica Molecular
2.
Curr Opin Struct Biol ; 74: 102389, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35605357

RESUMEN

Heteromeric amino acid transporters (HATs) are one of the ten types of amino acid transporters present in the human body. Growing interest in the pathophysiological role of this group of transporters in rare and complex diseases and cancer has brought about the recent resolution of various structures of human HATs and bacterial homologues at atomic level. This knowledge sheds light on the mechanisms of transport used by these molecules. Here, we discuss the molecular bases underlying substrate specificity, binding asymmetry, and the impact of disease-causing mutations on transporter biogenesis and function.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Biología Molecular , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico/fisiología , Humanos , Especificidad por Sustrato
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34848541

RESUMEN

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo-electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/fisiología , Especificidad por Sustrato/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/fisiología , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Aminoácidos Neutros/metabolismo , Transporte Biológico/fisiología , Microscopía por Crioelectrón/métodos , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Células HeLa , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
4.
Membranes (Basel) ; 11(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671740

RESUMEN

Accounting for nearly two-thirds of known druggable targets, membrane proteins are highly relevant for cell physiology and pharmacology. In this regard, the structural determination of pharmacologically relevant targets would facilitate the intelligent design of new drugs. The structural biology of membrane proteins is a field experiencing significant growth as a result of the development of new strategies for structure determination. However, membrane protein preparation for structural studies continues to be a limiting step in many cases due to the inherent instability of these molecules in non-native membrane environments. This review describes the approaches that have been developed to improve membrane protein stability. Membrane protein mutagenesis, detergent selection, lipid membrane mimics, antibodies, and ligands are described in this review as approaches to facilitate the production of purified and stable membrane proteins of interest for structural and functional studies.

5.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051106

RESUMEN

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidilserinas/metabolismo , Animales , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inflamación/metabolismo , Hígado/patología , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Cultivo Primario de Células , Transporte de Proteínas/fisiología , Transducción de Señal , Triglicéridos/metabolismo
6.
Nat Commun ; 10(1): 1807, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000719

RESUMEN

L-amino acid transporters (LATs) play key roles in human physiology and are implicated in several human pathologies. LATs are asymmetric amino acid exchangers where the low apparent affinity cytoplasmic side controls the exchange of substrates with high apparent affinity on the extracellular side. Here, we report the crystal structures of an LAT, the bacterial alanine-serine-cysteine exchanger (BasC), in a non-occluded inward-facing conformation in both apo and substrate-bound states. We crystallized BasC in complex with a nanobody, which blocks the transporter from the intracellular side, thus unveiling the sidedness of the substrate interaction of BasC. Two conserved residues in human LATs, Tyr 236 and Lys 154, are located in equivalent positions to the Na1 and Na2 sites of sodium-dependent APC superfamily transporters. Functional studies and molecular dynamics (MD) calculations reveal that these residues are key for the asymmetric substrate interaction of BasC and in the homologous human transporter Asc-1.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/química , Ácidos Aminoisobutíricos/química , Proteínas Bacterianas/química , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Ácidos Aminoisobutíricos/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Sitios de Unión , Camélidos del Nuevo Mundo , Cristalografía por Rayos X , Células HeLa , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Anticuerpos de Cadena Única/química , Especificidad por Sustrato
7.
J Gen Physiol ; 151(4): 505-517, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30696726

RESUMEN

Many key cell processes require prior cell uptake of amino acids from the environment, which is facilitated by cell membrane amino acid transporters such as those of the L-type amino acid transporter (LAT) subfamily. Alterations in LAT subfamily amino acid transport are associated with several human diseases, including cancer, aminoacidurias, and neurodegenerative conditions. Therefore, from the perspective of human health, there is considerable interest in obtaining structural information about these transporter proteins. We recently solved the crystal structure of the first LAT transporter, the bacterial alanine-serine-cysteine exchanger of Carnobacterium sp AT7 (BasC). Here, we provide a complete functional characterization of detergent-purified, liposome-reconstituted BasC transporter to allow the extension of the structural insights into mechanistic understanding. BasC is a sodium- and proton-independent small neutral amino acid exchanger whose substrate and inhibitor selectivity are almost identical to those previously described for the human LAT subfamily member Asc-1. Additionally, we show that, like its human counterparts, this transporter has apparent affinity asymmetry for the intra- and extracellular substrate binding sites-a key feature in the physiological role played by these proteins. BasC is an excellent paradigm of human LAT transporters and will contribute to our understanding of the molecular mechanisms underlying substrate recognition and translocation at both sides of the plasma membrane.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/química , Sistema de Transporte de Aminoácidos y+/metabolismo , Proteínas Bacterianas/química , Carnobacterium/metabolismo , Proteínas Bacterianas/metabolismo , Clonación Molecular , Regulación Bacteriana de la Expresión Génica
8.
J Gen Physiol ; 147(4): 353-68, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26976827

RESUMEN

The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis L-serine/L-threonine exchanger is the best-known prokaryotic paradigm of the mammalian L-amino acid transporter (LAT) family. Unfortunately, SteT's lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.


Asunto(s)
Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Proteínas Bacterianas/química , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estabilidad Proteica
9.
Proc Natl Acad Sci U S A ; 108(10): 3935-40, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368142

RESUMEN

Transporters of the amino acid, polyamine and organocation (APC) superfamily play essential roles in cell redox balance, cancer, and aminoacidurias. The bacterial L-arginine/agmatine antiporter, AdiC, is the main APC structural paradigm and shares the "5 + 5 inverted repeat" fold found in other families like the Na(+)-coupled neurotransmitter transporters. The available AdiC crystal structures capture two states of its transport cycle: the open-to-out apo and the outward-facing Arg(+)-bound occluded. However, the role of Arg(+) during the transition between these two states remains unknown. Here, we report the crystal structure at 3.0 Å resolution of an Arg(+)-bound AdiC mutant (N101A) in the open-to-out conformation, completing the picture of the major conformational states during the transport cycle of the 5 + 5 inverted repeat fold-transporters. The N101A structure is an intermediate state between the previous known AdiC conformations. The Arg(+)-guanidinium group in the current structure presents high mobility and delocalization, hampering substrate occlusion and resulting in a low translocation rate. Further analysis supports that proper coordination of this group with residues Asn101 and Trp293 is required to transit to the occluded state, providing the first clues on the molecular mechanism of substrate-induced fit in a 5 + 5 inverted repeat fold-transporter. The pseudosymmetry found between repeats in AdiC, and in all fold-related transporters, restraints the conformational changes, in particular the transmembrane helices rearrangements, which occur during the transport cycle. In AdiC these movements take place away from the dimer interface, explaining the independent functioning of each subunit.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
10.
J Biol Chem ; 285(37): 28764-76, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20610400

RESUMEN

System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same alpha-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC(50) similar to the apparent K(M) of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Transporte Biológico/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagénesis , Mutación Missense , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
11.
Hum Mol Genet ; 17(12): 1845-54, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18332091

RESUMEN

Most mutations in the rBAT subunit of the heterodimeric cystine transporter rBAT-b(0,+)AT cause type I cystinuria. Trafficking of the transporter requires the intracellular assembly of the two subunits. Without its partner, rBAT, but not b(0,+)AT, is rapidly degraded. We analyzed the initial biogenesis of wild-type rBAT and type I cystinuria rBAT mutants. rBAT was degraded, at least in part, via the ERAD pathway. Assembly with b(0,+)AT within the endoplasmic reticulum (ER) blocked rBAT degradation and could be independent of the calnexin chaperone system. This system was, however, necessary for post-assembly maturation of the heterodimer. Without b(0,+)AT, wild-type and rBAT mutants were degraded with similar kinetics. In its presence, rBAT mutants showed strongly reduced (L89P) or no transport activity, failed to acquire complex N-glycosylation and to oligomerize, suggesting assembly and/or folding defects. Most of the transmembrane domain mutant L89P did not heterodimerize with b(0,+)AT and was degraded. However, the few [L89P]rBAT-b(0,+)AT heterodimers were stable, consistent with assembly, but not folding, defects. Mutants of the rBAT extracellular domain (T216M, R365W, M467K and M467T) efficiently assembled with b(0,+)AT but were subsequently degraded. Together with earlier results, the data suggest a two-step biogenesis model, with the early assembly of the subunits followed by folding of the rBAT extracellular domain. Defects on either of these steps lead to the type I cystinuria phenotype.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistinuria/genética , Dimerización , Células HeLa , Humanos , Estructura Terciaria de Proteína , Transporte de Proteínas
12.
Eukaryot Cell ; 3(3): 589-97, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15189981

RESUMEN

We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Kluyveromyces/genética , Ácido Láctico/metabolismo , Succinato Deshidrogenasa/genética , Ácido Succínico/metabolismo , Secuencia de Aminoácidos , Etanol/metabolismo , Glucosa/metabolismo , Kluyveromyces/metabolismo , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Deshidrogenasa/metabolismo
13.
EMBO J ; 21(18): 4906-14, 2002 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-12234930

RESUMEN

The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System b(o,+) exchanges dibasic for neutral amino acids. It is composed of rBAT and b(o,+)AT, the latter being the polytopic membrane subunit. Mutations in either of them cause malfunction of the system, leading to cystinuria. b(o,+)AT-reconstituted systems from HeLa or MDCK cells catalysed transport of arginine that was totally dependent on the presence of one of the b(o,+) substrates inside the liposomes. rBAT was essential for the cell surface expression of b(o,+)AT, but it was not required for reconstituted b(o,+)AT transport activity. No system b(o,+) transport was detected in liposomes derived from cells expressing rBAT alone. The reconstituted b(o,+)AT showed kinetic asymmetry. Expressing the cystinuria-specific mutant A354T of b(o,+)AT in HeLa cells together with rBAT resulted in defective arginine uptake in whole cells, which was paralleled by the reconstituted b(o,+)AT activity. Thus, subunit b(o,+)AT by itself is sufficient to catalyse transmembrane amino acid exchange. The polytopic subunits may also be the catalytic part in other heteromeric transporters.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos , Sistemas de Transporte de Aminoácidos/fisiología , Proteínas Portadoras/metabolismo , Glicoproteínas de Membrana/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animales , Arginina/metabolismo , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Cistina/metabolismo , Cistinuria/genética , Perros , Células HeLa , Humanos , Riñón/citología , Leucina/metabolismo , Liposomas/química , Liposomas/metabolismo , Glicoproteínas de Membrana/genética , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA